Abstract:Spatiotemporal graph neural networks (STGNNs) have shown promising results in many domains, from forecasting to epidemiology. However, understanding the dynamics learned by these models and explaining their behaviour is significantly more complex than for models dealing with static data. Inspired by Koopman theory, which allows a simpler description of intricate, nonlinear dynamical systems, we introduce an explainability approach for temporal graphs. We present two methods to interpret the STGNN's decision process and identify the most relevant spatial and temporal patterns in the input for the task at hand. The first relies on dynamic mode decomposition (DMD), a Koopman-inspired dimensionality reduction method. The second relies on sparse identification of nonlinear dynamics (SINDy), a popular method for discovering governing equations, which we use for the first time as a general tool for explainability. We show how our methods can correctly identify interpretable features such as infection times and infected nodes in the context of dissemination processes.
Abstract:We propose a novel approach to compute the MAXCUT in attributed graphs, i.e., graphs with features associated with nodes and edges. Our approach is robust to the underlying graph topology and is fully differentiable, making it possible to find solutions that jointly optimize the MAXCUT along with other objectives. Based on the obtained MAXCUT partition, we implement a hierarchical graph pooling layer for Graph Neural Networks, which is sparse, differentiable, and particularly suitable for downstream tasks on heterophilic graphs.
Abstract:Given a set of synchronous time series, each associated with a sensor-point in space and characterized by inter-series relationships, the problem of spatiotemporal forecasting consists of predicting future observations for each point. Spatiotemporal graph neural networks achieve striking results by representing the relationships across time series as a graph. Nonetheless, most existing methods rely on the often unrealistic assumption that inputs are always available and fail to capture hidden spatiotemporal dynamics when part of the data is missing. In this work, we tackle this problem through hierarchical spatiotemporal downsampling. The input time series are progressively coarsened over time and space, obtaining a pool of representations that capture heterogeneous temporal and spatial dynamics. Conditioned on observations and missing data patterns, such representations are combined by an interpretable attention mechanism to generate the forecasts. Our approach outperforms state-of-the-art methods on synthetic and real-world benchmarks under different missing data distributions, particularly in the presence of contiguous blocks of missing values.
Abstract:Some applications of deep learning require not only to provide accurate results but also to quantify the amount of confidence in their prediction. The management of an electric power grid is one of these cases: to avoid risky scenarios, decision-makers need both precise and reliable forecasts of, for example, power loads. For this reason, point forecasts are not enough hence it is necessary to adopt methods that provide an uncertainty quantification. This work focuses on reservoir computing as the core time series forecasting method, due to its computational efficiency and effectiveness in predicting time series. While the RC literature mostly focused on point forecasting, this work explores the compatibility of some popular uncertainty quantification methods with the reservoir setting. Both Bayesian and deterministic approaches to uncertainty assessment are evaluated and compared in terms of their prediction accuracy, computational resource efficiency and reliability of the estimated uncertainty, based on a set of carefully chosen performance metrics.
Abstract:In Graph Neural Networks (GNNs), hierarchical pooling operators generate local summaries of the data by coarsening the graph structure and the vertex features. Considerable attention has been devoted to analyzing the expressive power of message-passing (MP) layers in GNNs, while a study on how graph pooling affects the expressiveness of a GNN is still lacking. Additionally, despite the recent advances in the design of pooling operators, there is not a principled criterion to compare them. In this work, we derive sufficient conditions for a pooling operator to fully preserve the expressive power of the MP layers before it. These conditions serve as a universal and theoretically-grounded criterion for choosing among existing pooling operators or designing new ones. Based on our theoretical findings, we analyze several existing pooling operators and identify those that fail to satisfy the expressiveness conditions. Finally, we introduce an experimental setup to verify empirically the expressive power of a GNN equipped with pooling layers, in terms of its capability to perform a graph isomorphism test.
Abstract:Subgraph-enhanced graph neural networks (SGNN) can increase the expressive power of the standard message-passing framework. This model family represents each graph as a collection of subgraphs, generally extracted by random sampling or with hand-crafted heuristics. Our key observation is that by selecting "meaningful" subgraphs, besides improving the expressivity of a GNN, it is also possible to obtain interpretable results. For this purpose, we introduce a novel framework that jointly predicts the class of the graph and a set of explanatory sparse subgraphs, which can be analyzed to understand the decision process of the classifier. We compare the performance of our framework against standard subgraph extraction policies, like random node/edge deletion strategies. The subgraphs produced by our framework allow to achieve comparable performance in terms of accuracy, with the additional benefit of providing explanations.
Abstract:Graph Neural Networks (GNNs) are deep learning models designed to process attributed graphs. GNNs can compute cluster assignments accounting both for the vertex features and for the graph topology. Existing GNNs for clustering are trained by optimizing an unsupervised minimum cut objective, which is approximated by a Spectral Clustering (SC) relaxation. SC offers a closed-form solution that, however, is not particularly useful for a GNN trained with gradient descent. Additionally, the SC relaxation is loose and yields overly smooth cluster assignments, which do not separate well the samples. We propose a GNN model that optimizes a tighter relaxation of the minimum cut based on graph total variation (GTV). Our model has two core components: i) a message-passing layer that minimizes the $\ell_1$ distance in the features of adjacent vertices, which is key to achieving sharp cluster transitions; ii) a loss function that minimizes the GTV in the cluster assignments while ensuring balanced partitions. By optimizing the proposed loss, our model can be self-trained to perform clustering. In addition, our clustering procedure can be used to implement graph pooling in deep GNN architectures for graph classification. Experiments show that our model outperforms other GNN-based approaches for clustering and graph pooling.
Abstract:Recently, subgraphs-enhanced Graph Neural Networks (SGNNs) have been introduced to enhance the expressive power of Graph Neural Networks (GNNs), which was proved to be not higher than the 1-dimensional Weisfeiler-Leman isomorphism test. The new paradigm suggests using subgraphs extracted from the input graph to improve the model's expressiveness, but the additional complexity exacerbates an already challenging problem in GNNs: explaining their predictions. In this work, we adapt PGExplainer, one of the most recent explainers for GNNs, to SGNNs. The proposed explainer accounts for the contribution of all the different subgraphs and can produce a meaningful explanation that humans can interpret. The experiments that we performed both on real and synthetic datasets show that our framework is successful in explaining the decision process of an SGNN on graph classification tasks.
Abstract:Neural forecasting of spatiotemporal time series drives both research and industrial innovation in several relevant application domains. Graph neural networks (GNNs) are often the core component of the forecasting architecture. However, in most spatiotemporal GNNs, the computational complexity scales up to a quadratic factor with the length of the sequence times the number of links in the graph, hence hindering the application of these models to large graphs and long temporal sequences. While methods to improve scalability have been proposed in the context of static graphs, few research efforts have been devoted to the spatiotemporal case. To fill this gap, we propose a scalable architecture that exploits an efficient encoding of both temporal and spatial dynamics. In particular, we use a randomized recurrent neural network to embed the history of the input time series into high-dimensional state representations encompassing multi-scale temporal dynamics. Such representations are then propagated along the spatial dimension using different powers of the graph adjacency matrix to generate node embeddings characterized by a rich pool of spatiotemporal features. The resulting node embeddings can be efficiently pre-computed in an unsupervised manner, before being fed to a feed-forward decoder that learns to map the multi-scale spatiotemporal representations to predictions. The training procedure can then be parallelized node-wise by sampling the node embeddings without breaking any dependency, thus enabling scalability to large networks. Empirical results on relevant datasets show that our approach achieves results competitive with the state of the art, while dramatically reducing the computational burden.
Abstract:The objective functions used in spectral clustering are usually composed of two terms: i) a term that minimizes the local quadratic variation of the cluster assignments on the graph and; ii) a term that balances the clustering partition and helps avoiding degenerate solutions. This paper shows that a graph neural network, equipped with suitable message passing layers, can generate good cluster assignments by optimizing only a balancing term. Results on attributed graph datasets show the effectiveness of the proposed approach in terms of clustering performance and computation time.