Abstract:PINN models have demonstrated impressive capabilities in addressing fluid PDE problems, and their potential in solid mechanics is beginning to emerge. This study identifies two key challenges when using PINN to solve general solid mechanics problems. These challenges become evident when comparing the limitations of PINN with the well-established numerical methods commonly used in solid mechanics, such as the finite element method (FEM). Specifically: a) PINN models generate solutions over an infinite domain, which conflicts with the finite boundaries typical of most solid structures; and b) the solution space utilised by PINN is Euclidean, which is inadequate for addressing the complex geometries often present in solid structures. This work proposes a PINN architecture used for general solid mechanics problems, termed the Finite-PINN model. The proposed model aims to effectively address these two challenges while preserving as much of the original implementation of PINN as possible. The unique architecture of the Finite-PINN model addresses these challenges by separating the approximation of stress and displacement fields, and by transforming the solution space from the traditional Euclidean space to a Euclidean-topological joint space. Several case studies presented in this paper demonstrate that the Finite-PINN model provides satisfactory results for a variety of problem types, including both forward and inverse problems, in both 2D and 3D contexts. The developed Finite-PINN model offers a promising tool for addressing general solid mechanics problems, particularly those not yet well-explored in current research.
Abstract:Respiratory rate (RR) is a critical health indicator often monitored under inconvenient scenarios, limiting its practicality for continuous monitoring. Photoplethysmography (PPG) sensors, increasingly integrated into wearable devices, offer a chance to continuously estimate RR in a portable manner. In this paper, we propose RespDiff, an end-to-end multi-scale RNN diffusion model for respiratory waveform estimation from PPG signals. RespDiff does not require hand-crafted features or the exclusion of low-quality signal segments, making it suitable for real-world scenarios. The model employs multi-scale encoders, to extract features at different resolutions, and a bidirectional RNN to process PPG signals and extract respiratory waveform. Additionally, a spectral loss term is introduced to optimize the model further. Experiments conducted on the BIDMC dataset demonstrate that RespDiff outperforms notable previous works, achieving a mean absolute error (MAE) of 1.18 bpm for RR estimation while others range from 1.66 to 2.15 bpm, showing its potential for robust and accurate respiratory monitoring in real-world applications.
Abstract:This work proposes a Physics-informed Neural Network framework with Graph Embedding (GPINN) to perform PINN in graph, i.e. topological space instead of traditional Euclidean space, for improved problem-solving efficiency. The method integrates topological data into the neural network's computations, which significantly boosts the performance of the Physics-Informed Neural Network (PINN). The graph embedding technique infuses extra dimensions into the input space to encapsulate the spatial characteristics of a graph while preserving the properties of the original space. The selection of these extra dimensions is guided by the Fiedler vector, offering an optimised pathologic notation of the graph. Two case studies are conducted, which demonstrate significant improvement in the performance of GPINN in comparison to traditional PINN, particularly in its superior ability to capture physical features of the solution.
Abstract:Photoplethysmography (PPG) signals are omnipresent in wearable devices, as they measure blood volume variations using LED technology. These signals provide insight into the body's circulatory system and can be employed to extract various bio-features, such as heart rate and vascular ageing. Although several algorithms have been proposed for this purpose, many exhibit limitations, including heavy reliance on human calibration, high signal quality requirements, and a lack of generalization. In this paper, we introduce a PPG signal processing framework that integrates graph theory and computer vision algorithms, which is invariant to affine transformations, offers rapid computation speed, and exhibits robust generalization across tasks and datasets.
Abstract:Predicting metro passenger flow precisely is of great importance for dynamic traffic planning. Deep learning algorithms have been widely applied due to their robust performance in modelling non-linear systems. However, traditional deep learning algorithms completely discard the inherent graph structure within the metro system. Graph-based deep learning algorithms could utilise the graph structure but raise a few challenges, such as how to determine the weights of the edges and the shallow receptive field caused by the over-smoothing issue. To further improve these challenges, this study proposes a model based on GraphSAGE with an edge weights learner applied. The edge weights learner utilises socially meaningful features to generate edge weights. Hypergraph and temporal exploitation modules are also constructed as add-ons for better performance. A comparison study is conducted on the proposed algorithm and other state-of-art graph neural networks, where the proposed algorithm could improve the performance.