Abstract:Over the past two years, the use of large language models (LLMs) has advanced rapidly. While these LLMs offer considerable convenience, they also raise security concerns, as LLMs are vulnerable to adversarial attacks by some well-designed textual perturbations. In this paper, we introduce a novel defense technique named Large LAnguage MOdel Sentinel (LLAMOS), which is designed to enhance the adversarial robustness of LLMs by purifying the adversarial textual examples before feeding them into the target LLM. Our method comprises two main components: a) Agent instruction, which can simulate a new agent for adversarial defense, altering minimal characters to maintain the original meaning of the sentence while defending against attacks; b) Defense guidance, which provides strategies for modifying clean or adversarial examples to ensure effective defense and accurate outputs from the target LLMs. Remarkably, the defense agent demonstrates robust defensive capabilities even without learning from adversarial examples. Additionally, we conduct an intriguing adversarial experiment where we develop two agents, one for defense and one for defense, and engage them in mutual confrontation. During the adversarial interactions, neither agent completely beat the other. Extensive experiments on both open-source and closed-source LLMs demonstrate that our method effectively defends against adversarial attacks, thereby enhancing adversarial robustness.
Abstract:With the advancement of neural networks, diverse methods for neural Granger causality have emerged, which demonstrate proficiency in handling complex data, and nonlinear relationships. However, the existing framework of neural Granger causality has several limitations. It requires the construction of separate predictive models for each target variable, and the relationship depends on the sparsity on the weights of the first layer, resulting in challenges in effectively modeling complex relationships between variables as well as unsatisfied estimation accuracy of Granger causality. Moreover, most of them cannot grasp full-time Granger causality. To address these drawbacks, we propose a Jacobian Regularizer-based Neural Granger Causality (JRNGC) approach, a straightforward yet highly effective method for learning multivariate summary Granger causality and full-time Granger causality by constructing a single model for all target variables. Specifically, our method eliminates the sparsity constraints of weights by leveraging an input-output Jacobian matrix regularizer, which can be subsequently represented as the weighted causal matrix in the post-hoc analysis. Extensive experiments show that our proposed approach achieves competitive performance with the state-of-the-art methods for learning summary Granger causality and full-time Granger causality while maintaining lower model complexity and high scalability.
Abstract:Pretrained vision-language models (VLMs) like CLIP have shown impressive generalization performance across various downstream tasks, yet they remain vulnerable to adversarial attacks. While prior research has primarily concentrated on improving the adversarial robustness of image encoders to guard against attacks on images, the exploration of text-based and multimodal attacks has largely been overlooked. In this work, we initiate the first known and comprehensive effort to study adapting vision-language models for adversarial robustness under the multimodal attack. Firstly, we introduce a multimodal attack strategy and investigate the impact of different attacks. We then propose a multimodal contrastive adversarial training loss, aligning the clean and adversarial text embeddings with the adversarial and clean visual features, to enhance the adversarial robustness of both image and text encoders of CLIP. Extensive experiments on 15 datasets across two tasks demonstrate that our method significantly improves the adversarial robustness of CLIP. Interestingly, we find that the model fine-tuned against multimodal adversarial attacks exhibits greater robustness than its counterpart fine-tuned solely against image-based attacks, even in the context of image attacks, which may open up new possibilities for enhancing the security of VLMs.
Abstract:Automated diagnosis with artificial intelligence has emerged as a promising area in the realm of medical imaging, while the interpretability of the introduced deep neural networks still remains an urgent concern. Although contemporary works, such as XProtoNet and MProtoNet, has sought to design interpretable prediction models for the issue, the localization precision of their resulting attribution maps can be further improved. To this end, we propose a Multi-scale Attentive Prototypical part Network, termed MAProtoNet, to provide more precise maps for attribution. Specifically, we introduce a concise multi-scale module to merge attentive features from quadruplet attention layers, and produces attribution maps. The proposed quadruplet attention layers can enhance the existing online class activation mapping loss via capturing interactions between the spatial and channel dimension, while the multi-scale module then fuses both fine-grained and coarse-grained information for precise maps generation. We also apply a novel multi-scale mapping loss for supervision on the proposed multi-scale module. Compared to existing interpretable prototypical part networks in medical imaging, MAProtoNet can achieve state-of-the-art performance in localization on brain tumor segmentation (BraTS) datasets, resulting in approximately 4% overall improvement on activation precision score (with a best score of 85.8%), without using additional annotated labels of segmentation. Our code will be released in https://github.com/TUAT-Novice/maprotonet.
Abstract:Diffusion models (DMs) based adversarial purification (AP) has shown to be the most powerful alternative to adversarial training (AT). However, these methods neglect the fact that pre-trained diffusion models themselves are not robust to adversarial attacks as well. Additionally, the diffusion process can easily destroy semantic information and generate a high quality image but totally different from the original input image after the reverse process, leading to degraded standard accuracy. To overcome these issues, a natural idea is to harness adversarial training strategy to retrain or fine-tune the pre-trained diffusion model, which is computationally prohibitive. We propose a novel robust reverse process with adversarial guidance, which is independent of given pre-trained DMs and avoids retraining or fine-tuning the DMs. This robust guidance can not only ensure to generate purified examples retaining more semantic content but also mitigate the accuracy-robustness trade-off of DMs for the first time, which also provides DM-based AP an efficient adaptive ability to new attacks. Extensive experiments are conducted to demonstrate that our method achieves the state-of-the-art results and exhibits generalization against different attacks.
Abstract:A novel tensor decomposition framework, termed Tensor Star (TS) decomposition, is proposed which represents a new type of tensor network decomposition based on tensor contractions. This is achieved by connecting the core tensors in a ring shape, whereby the core tensors act as skip connections between the factor tensors and allow for direct correlation characterisation between any two arbitrary dimensions. Uniquely, this makes it possible to decompose an order-$N$ tensor into $N$ order-$3$ factor tensors $\{\mathcal{G}_{k}\}_{k=1}^{N}$ and $N$ order-$4$ core tensors $\{\mathcal{C}_{k}\}_{k=1}^{N}$, which are arranged in a star shape. Unlike the class of Tensor Train (TT) decompositions, these factor tensors are not directly connected to one another. The so obtained core tensors also enable consecutive factor tensors to have different latent ranks. In this way, the TS decomposition alleviates the "curse of dimensionality" and controls the "curse of ranks", exhibiting a storage complexity which scales linearly with the number of dimensions and as the fourth power of the ranks.
Abstract:Tensor network structure search (TN-SS), aiming at searching for suitable tensor network (TN) structures in representing high-dimensional problems, largely promotes the efficacy of TN in various machine learning applications. Nonetheless, finding a satisfactory TN structure using existing algorithms remains challenging. To develop more effective algorithms and avoid the human labor-intensive development process, we explore the knowledge embedded in large language models (LLMs) for the automatic design of TN-SS algorithms. Our approach, dubbed GPTN-SS, leverages an elaborate crafting LLM-based prompting system that operates in an evolutionary-like manner. The experimental results, derived from real-world data, demonstrate that GPTN-SS can effectively leverage the insights gained from existing methods to develop novel TN-SS algorithms that achieve a better balance between exploration and exploitation. These algorithms exhibit superior performance in searching the high-quality TN structures for natural image compression and model parameters compression while also demonstrating generalizability in their performance.
Abstract:The deep neural networks are known to be vulnerable to well-designed adversarial attacks. The most successful defense technique based on adversarial training (AT) can achieve optimal robustness against particular attacks but cannot generalize well to unseen attacks. Another effective defense technique based on adversarial purification (AP) can enhance generalization but cannot achieve optimal robustness. Meanwhile, both methods share one common limitation on the degraded standard accuracy. To mitigate these issues, we propose a novel framework called Adversarial Training on Purification (AToP), which comprises two components: perturbation destruction by random transforms (RT) and purifier model fine-tuned (FT) by adversarial loss. RT is essential to avoid overlearning to known attacks resulting in the robustness generalization to unseen attacks and FT is essential for the improvement of robustness. To evaluate our method in an efficient and scalable way, we conduct extensive experiments on CIFAR-10, CIFAR-100, and ImageNette to demonstrate that our method achieves state-of-the-art results and exhibits generalization ability against unseen attacks.
Abstract:In numerous applications, binary reactions or event counts are observed and stored within high-order tensors. Tensor decompositions (TDs) serve as a powerful tool to handle such high-dimensional and sparse data. However, many traditional TDs are explicitly or implicitly designed based on the Gaussian distribution, which is unsuitable for discrete data. Moreover, most TDs rely on predefined multi-linear structures, such as CP and Tucker formats. Therefore, they may not be effective enough to handle complex real-world datasets. To address these issues, we propose ENTED, an \underline{E}fficient \underline{N}onparametric \underline{TE}nsor \underline{D}ecomposition for binary and count tensors. Specifically, we first employ a nonparametric Gaussian process (GP) to replace traditional multi-linear structures. Next, we utilize the \pg augmentation which provides a unified framework to establish conjugate models for binary and count distributions. Finally, to address the computational issue of GPs, we enhance the model by incorporating sparse orthogonal variational inference of inducing points, which offers a more effective covariance approximation within GPs and stochastic natural gradient updates for nonparametric models. We evaluate our model on several real-world tensor completion tasks, considering binary and count datasets. The results manifest both better performance and computational advantages of the proposed model.
Abstract:With large training datasets and massive amounts of computing sources, large language models (LLMs) achieve remarkable performance in comprehensive and generative ability. Based on those powerful LLMs, the model fine-tuned with domain-specific datasets posseses more specialized knowledge and thus is more practical like medical LLMs. However, the existing fine-tuned medical LLMs are limited to general medical knowledge with English language. For disease-specific problems, the model's response is inaccurate and sometimes even completely irrelevant, especially when using a language other than English. In this work, we focus on the particular disease of Epilepsy with Japanese language and introduce a customized LLM termed as EpilepsyLLM. Our model is trained from the pre-trained LLM by fine-tuning technique using datasets from the epilepsy domain. The datasets contain knowledge of basic information about disease, common treatment methods and drugs, and important notes in life and work. The experimental results demonstrate that EpilepsyLLM can provide more reliable and specialized medical knowledge responses.