Abstract:Automated diagnosis with artificial intelligence has emerged as a promising area in the realm of medical imaging, while the interpretability of the introduced deep neural networks still remains an urgent concern. Although contemporary works, such as XProtoNet and MProtoNet, has sought to design interpretable prediction models for the issue, the localization precision of their resulting attribution maps can be further improved. To this end, we propose a Multi-scale Attentive Prototypical part Network, termed MAProtoNet, to provide more precise maps for attribution. Specifically, we introduce a concise multi-scale module to merge attentive features from quadruplet attention layers, and produces attribution maps. The proposed quadruplet attention layers can enhance the existing online class activation mapping loss via capturing interactions between the spatial and channel dimension, while the multi-scale module then fuses both fine-grained and coarse-grained information for precise maps generation. We also apply a novel multi-scale mapping loss for supervision on the proposed multi-scale module. Compared to existing interpretable prototypical part networks in medical imaging, MAProtoNet can achieve state-of-the-art performance in localization on brain tumor segmentation (BraTS) datasets, resulting in approximately 4% overall improvement on activation precision score (with a best score of 85.8%), without using additional annotated labels of segmentation. Our code will be released in https://github.com/TUAT-Novice/maprotonet.
Abstract:Analyzing the readability of articles has been an important sociolinguistic task. Addressing this task is necessary to the automatic recommendation of appropriate articles to readers with different comprehension abilities, and it further benefits education systems, web information systems, and digital libraries. Current methods for assessing readability employ empirical measures or statistical learning techniques that are limited by their ability to characterize complex patterns such as article structures and semantic meanings of sentences. In this paper, we propose a new and comprehensive framework which uses a hierarchical self-attention model to analyze document readability. In this model, measurements of sentence-level difficulty are captured along with the semantic meanings of each sentence. Additionally, the sentence-level features are incorporated to characterize the overall readability of an article with consideration of article structures. We evaluate our proposed approach on three widely-used benchmark datasets against several strong baseline approaches. Experimental results show that our proposed method achieves the state-of-the-art performance on estimating the readability for various web articles and literature.