Abstract:This research proposes a novel approach utilizing Orbital Angular Momentum (OAM) beams to enhance Radar Cross Section (RCS) diversity for target detection in future transportation systems. Unlike conventional OAM beams with hollow-shaped divergence patterns, the new proposed OAM beams provide uniform illumination across the target without a central energy void, but keep the inherent phase gradient of vortex property. We utilize waveguide slot antennas to generate four different modes of these novel OAM beams at X-band frequency. Furthermore, these different mode OAM beams are used to illuminate metal models, and the resulting RCS is compared with that obtained using plane waves. The findings reveal that the novel OAM beams produce significant azimuthal RCS diversity, providing a new approach for the detection of weak and small targets.This study not only reveals the RCS diversity phenomenon based on novel OAM beams of different modes but also addresses the issue of energy divergence that hinders traditional OAM beams in long-range detection applications.
Abstract:This paper presents a sophisticated reconfigurable metasurface architecture that introduces an advanced concept of flexible full-array space-time wavefront manipulation with enhanced dynamic capabilities. The practical 2-bit phase-shifting unit cell on the RIS is distinguished by its ability to maintain four stable phase states, each with ${90^ \circ }$ differences, and features an insertion loss of less than 0.6 dB across a bandwidth of 200 MHz. All reconfigurable units are equipped with meticulously designed control circuits, governed by an intelligent core composed of multiple Micro-Controller Units (MCUs), enabling rapid control response across the entire RIS array. Owing to the capability of each unit cell on the metasurface to independently switch states, the entire RIS is not limited to controlling general beams with specific directional patterns, but also generates beams with more complex structures, including multi-focus 3D spot beams and vortex beams. This development substantially broadens its applicability across various industrial wireless transmission scenarios. Moreover, by leveraging the rapid-respond space-time coding and the full-array independent programmability of the RIS prototyping operating at 10.7 GHz, we have demonstrated that: 1) The implementation of 3D spot beams scanning facilitates dynamic beam tracking and real-time communication under the indoor near-field scenario; 2) The rapid wavefront rotation of vortex beams enables precise modulation of signals within the Doppler domain, showcasing an innovative approach to wireless signal manipulation; 3) The beam steering experiments for blocking users under outdoor far-field scenarios, verifying the beamforming capability of the RIS board.
Abstract:This paper is the first to propose an end-to-end framework of mutually reinforcing images to 3D surface recurrent neural network-like for model-adaptation indoor 3D reconstruction,where multi-view dense matching and point cloud surface optimization are mutually reinforced by a RNN-like structure rather than being treated as a separate issue.The characteristics are as follows:In the multi-view dense matching module, the model-adaptation strategy is used to fine-tune and optimize a Transformer-based multi-view dense matching DNN,so that it has the higher image feature for matching and detail expression capabilities;In the point cloud surface optimization module,the 3D surface reconstruction network based on 3D implicit field is optimized by using model-adaptation strategy,which solves the problem of point cloud surface optimization without knowing normal vector of 3D surface.To improve and finely reconstruct 3D surfaces from point cloud,smooth loss is proposed and added to this module;The MRIo3DS-Net is a RNN-like framework,which utilizes the finely optimized 3D surface obtained by PCSOM to recursively reinforce the differentiable warping for optimizing MVDMM.This refinement leads to achieving better dense matching results, and better dense matching results leads to achieving better 3D surface results recursively and mutually.Hence, model-adaptation strategy can better collaborate the differences between the two network modules,so that they complement each other to achieve the better effect;To accelerate the transfer learning and training convergence from source domain to target domain,a multi-task loss function based on Bayesian uncertainty is used to adaptively adjust the weights between the two networks loss functions of MVDMM and PCSOM;In this multi-task cascade network framework,any modules can be replaced by any state-of-the-art networks to achieve better 3D reconstruction results.
Abstract:Fast convolution algorithms, including Winograd and FFT, can efficiently accelerate convolution operations in deep models. However, these algorithms depend on high-precision arithmetic to maintain inference accuracy, which conflicts with the model quantization. To resolve this conflict and further improve the efficiency of quantized convolution, we proposes SFC, a new algebra transform for fast convolution by extending the Discrete Fourier Transform (DFT) with symbolic computing, in which only additions are required to perform the transformation at specific transform points, avoiding the calculation of irrational number and reducing the requirement for precision. Additionally, we enhance convolution efficiency by introducing correction terms to convert invalid circular convolution outputs of the Fourier method into effective ones. The numerical error analysis is presented for the first time in this type of work and proves that our algorithms can provide a 3.68x multiplication reduction for 3x3 convolution, while the Winograd algorithm only achieves a 2.25x reduction with similarly low numerical errors. Experiments carried out on benchmarks and FPGA show that our new algorithms can further improve the computation efficiency of quantized models while maintaining accuracy, surpassing both the quantization-alone method and existing works on fast convolution quantization.
Abstract:Talking head synthesis, an advanced method for generating portrait videos from a still image driven by specific content, has garnered widespread attention in virtual reality, augmented reality and game production. Recently, significant breakthroughs have been made with the introduction of novel models such as the transformer and the diffusion model. Current methods can not only generate new content but also edit the generated material. This survey systematically reviews the technology, categorizing it into three pivotal domains: portrait generation, driven mechanisms, and editing techniques. We summarize milestone studies and critically analyze their innovations and shortcomings within each domain. Additionally, we organize an extensive collection of datasets and provide a thorough performance analysis of current methodologies based on various evaluation metrics, aiming to furnish a clear framework and robust data support for future research. Finally, we explore application scenarios of talking head synthesis, illustrate them with specific cases, and examine potential future directions.
Abstract:Backdoor attacks have been one of the emerging security threats to deep neural networks (DNNs), leading to serious consequences. One of the mainstream backdoor defenses is model reconstruction-based. Such defenses adopt model unlearning or pruning to eliminate backdoors. However, little attention has been paid to survive from such defenses. To bridge the gap, we propose Venom, the first generic backdoor attack enhancer to improve the survivability of existing backdoor attacks against model reconstruction-based defenses. We formalize Venom as a binary-task optimization problem. The first is the original backdoor attack task to preserve the original attack capability, while the second is the attack enhancement task to improve the attack survivability. To realize the second task, we propose attention imitation loss to force the decision path of poisoned samples in backdoored models to couple with the crucial decision path of benign samples, which makes backdoors difficult to eliminate. Our extensive evaluation on two DNNs and three datasets has demonstrated that Venom significantly improves the survivability of eight state-of-the-art attacks against eight state-of-the-art defenses without impacting the capability of the original attacks.
Abstract:Wireless backhaul offers a more cost-effective, time-efficient, and reconfigurable solution than wired backhaul to connect the edge-computing cells to the core network. As the amount of transmitted data increases, the low-rank characteristic of Line-of-Sight (LoS) channel severely limits the growth of channel capacity in the point-to-point backhaul transmission scenario. Orbital Angular Momentum (OAM), also known as vortex beam, is considered a potentially effective solution for high-capacity LoS wireless transmission. However, due to the shortcomings of its energy divergence and the specificity of multi-mode divergence angles, OAM beams have been difficult to apply in practical communication systems for a long time. In this work, a novel multi-mode convergent transmission with co-scale reception scheme is proposed. OAM beams of different modes can be transmitted with the same beam divergent angle, while the wavefronts are tailored by the ring-shaped Airy compensation lens during propagation, so that the energy will converge to the same spatial area for receiving. Based on this scheme, not only is the Signal-to-Noise Ratio (SNR) greatly improved, but it is also possible to simultaneously receive and demodulate OAM channels multiplexed with different modes in a limited space area. Through prototype experiments, we demonstrated that 3 kinds of OAM modes are tunable, and different channels can be separated simultaneously with receiving power increasing. The measurement isolations between channels are over 11 dB, which ensures a reliable 16-QAM multiplexing wireless transmission demo system. This work may explore the potential applications of OAM-based multi-mode convergent transmission in LoS wireless communications.
Abstract:Since the World Health Organization (WHO) characterized COVID-19 as a pandemic in March 2020, there have been over 600 million confirmed cases of COVID-19 and more than six million deaths as of October 2022. The relationship between the COVID-19 pandemic and human behavior is complicated. On one hand, human behavior is found to shape the spread of the disease. On the other hand, the pandemic has impacted and even changed human behavior in almost every aspect. To provide a holistic understanding of the complex interplay between human behavior and the COVID-19 pandemic, researchers have been employing big data techniques such as natural language processing, computer vision, audio signal processing, frequent pattern mining, and machine learning. In this study, we present an overview of the existing studies on using big data techniques to study human behavior in the time of the COVID-19 pandemic. In particular, we categorize these studies into three groups - using big data to measure, model, and leverage human behavior, respectively. The related tasks, data, and methods are summarized accordingly. To provide more insights into how to fight the COVID-19 pandemic and future global catastrophes, we further discuss challenges and potential opportunities.