Abstract:In this paper, we propose a novel low complexity time domain (TD) oversampling receiver framework under affine frequency division multiplexing (AFDM) waveforms for joint channel estimation and data detection (JCEDD). Leveraging a generalized doubly-dispersive channel model, we first derive the input-output (I/O) relationship for arbitrary waveforms when oversampled in the TD and present the I/O relationship for AFDM as an example. Subsequently, utilizing the multiple sample streams created via the oversampling procedure, we use the parametric bilinear Gaussian belief propagation (PBiGaBP) technique to conduct JCEDD for decoding the transmitted data and estimating the complex channel coefficients. Simulation results verify significant performance improvements both in terms of data decoding and complex channel coefficient estimation with improved robustness against a varying number of pilots over a conventional Nyquist sampling rate receiver.
Abstract:The Rydberg atomic quantum receiver (RAQR) is an emerging quantum precision sensing platform designed for receiving radio frequency (RF) signals. It relies on creation of Rydberg atoms from normal atoms by exciting one or more electrons to a very high energy level, which in turn makes the atom sensitive to RF signals. The RAQR realizes RF-to-optical conversion based on light-atom interaction relying on the so called electromagnetically induced transparency (EIT) and Aulter-Townes splitting (ATS), so that the desired RF signal can be read out optically. The large dipole moments of Rydberg atoms associated with rich choices of Rydberg states and various modulation schemes facilitate an ultra-high sensitivity ($\sim$ nV/cm/$\sqrt{\text{Hz}}$) and an ultra-broadband tunability (near direct-current to Terahertz). RAQRs also exhibit compelling scalability and lend themselves to the construction of innovative, compact receivers. Initial experimental studies have demonstrated their capabilities in classical wireless communications and sensing. To fully harness their potential in a wide variety of applications, we commence by outlining the underlying fundamentals of Rydberg atoms, followed by the principles, structures, and theories of RAQRs. Finally, we conceive Rydberg atomic quantum single-input single-output (RAQ-SISO) and multiple-input multiple-output (RAQ-MIMO) schemes for facilitating the integration of RAQRs with classical wireless systems, and conclude with a set of potent research directions.
Abstract:In this correspondence, a new single-carrier waveform, called chirped discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-s-OFDM), is proposed for the sixth generation of communications. By chirping DFT-s-OFDM in the time domain, the proposed waveform maintains the low peak-to-average-power ratio (PAPR) of DFT-s-OFDM. Thanks to full-band transmission and symbols retransmission enabled by chirping and discrete Fourier transform (DFT) precoding, the proposed waveform can enhance noise suppression of linear minimum mean square error equalization. Its bit error rate (BER) upper bound and diversity order are derived using pairwise error probability. Simulation results confirm that the proposed waveform outperforms the state-of-the-art waveforms in terms of BER, output signal-to-noise-ratio, and PAPR.
Abstract:This paper presents a sophisticated reconfigurable metasurface architecture that introduces an advanced concept of flexible full-array space-time wavefront manipulation with enhanced dynamic capabilities. The practical 2-bit phase-shifting unit cell on the RIS is distinguished by its ability to maintain four stable phase states, each with ${90^ \circ }$ differences, and features an insertion loss of less than 0.6 dB across a bandwidth of 200 MHz. All reconfigurable units are equipped with meticulously designed control circuits, governed by an intelligent core composed of multiple Micro-Controller Units (MCUs), enabling rapid control response across the entire RIS array. Owing to the capability of each unit cell on the metasurface to independently switch states, the entire RIS is not limited to controlling general beams with specific directional patterns, but also generates beams with more complex structures, including multi-focus 3D spot beams and vortex beams. This development substantially broadens its applicability across various industrial wireless transmission scenarios. Moreover, by leveraging the rapid-respond space-time coding and the full-array independent programmability of the RIS prototyping operating at 10.7 GHz, we have demonstrated that: 1) The implementation of 3D spot beams scanning facilitates dynamic beam tracking and real-time communication under the indoor near-field scenario; 2) The rapid wavefront rotation of vortex beams enables precise modulation of signals within the Doppler domain, showcasing an innovative approach to wireless signal manipulation; 3) The beam steering experiments for blocking users under outdoor far-field scenarios, verifying the beamforming capability of the RIS board.
Abstract:Integrated sensing and communication (ISAC) has emerged as a promising technology to facilitate high-rate communications and super-resolution sensing, particularly operating in the millimeter wave (mmWave) band. However, the vulnerability of mmWave signals to blockages severely impairs ISAC capabilities and coverage. To tackle this, an efficient and low-cost solution is to deploy distributed reconfigurable intelligent surfaces (RISs) to construct virtual links between the base stations (BSs) and users in a controllable fashion. In this paper, we investigate the generalized RIS-assisted mmWave ISAC networks considering the blockage effect, and examine the beneficial impact of RISs on the coverage rate utilizing stochastic geometry. Specifically, taking into account the coupling effect of ISAC dual functions within the same network topology, we derive the conditional coverage probability of ISAC performance for two association cases, based on the proposed beam pattern model and user association policies. Then, the marginal coverage rate is calculated by combining these two cases through the distance-dependent thinning method. Simulation results verify the accuracy of derived theoretical formulations and provide valuable guidelines for the practical network deployment. Specifically, our results indicate the superiority of the RIS deployment with the density of 40 km${}^{-2}$ BSs, and that the joint coverage rate of ISAC performance exhibits potential growth from $67.1\%$ to $92.2\%$ with the deployment of RISs.
Abstract:Integrated sensing and communication (ISAC) is increasingly recognized as a pivotal technology for next-generation cellular networks, offering mutual benefits in both sensing and communication capabilities. This advancement necessitates a re-examination of the fundamental limits within networks where these two functions coexist via shared spectrum and infrastructures. However, traditional stochastic geometry-based performance analyses are confined to either communication or sensing networks separately. This paper bridges this gap by introducing a generalized stochastic geometry framework in ISAC networks. Based on this framework, we define and calculate the coverage and ergodic rate of sensing and communication performance under resource constraints. Then, we shed light on the fundamental limits of ISAC networks by presenting theoretical results for the coverage rate of the unified performance, taking into account the coupling effects of dual functions in coexistence networks. Further, we obtain the analytical formulations for evaluating the ergodic sensing rate constrained by the maximum communication rate, and the ergodic communication rate constrained by the maximum sensing rate. Extensive numerical results validate the accuracy of all theoretical derivations, and also indicate that denser networks significantly enhance ISAC coverage. Specifically, increasing the base station density from $1$ $\text{km}^{-2}$ to $10$ $\text{km}^{-2}$ can boost the ISAC coverage rate from $1.4\%$ to $39.8\%$. Further, results also reveal that with the increase of the constrained sensing rate, the ergodic communication rate improves significantly, but the reverse is not obvious.
Abstract:Stacked intelligent metasurfaces (SIM) are capable of emulating reconfigurable physical neural networks by relying on electromagnetic (EM) waves as carriers. They can also perform various complex computational and signal processing tasks. A SIM is fabricated by densely integrating multiple metasurface layers, each consisting of a large number of small meta-atoms that can control the EM waves passing through it. In this paper, we harness a SIM for two-dimensional (2D) direction-of-arrival (DOA) estimation. In contrast to the conventional designs, an advanced SIM in front of the receiver array automatically carries out the 2D discrete Fourier transform (DFT) as the incident waves propagate through it. As a result, the receiver array directly observes the angular spectrum of the incoming signal. In this context, the DOA estimates can be readily obtained by using probes to detect the energy distribution on the receiver array. This avoids the need for power-thirsty radio frequency (RF) chains. To enable SIM to perform the 2D DFT, we formulate the optimization problem of minimizing the fitting error between the SIM's EM response and the 2D DFT matrix. Furthermore, a gradient descent algorithm is customized for iteratively updating the phase shift of each meta-atom in SIM. To further improve the DOA estimation accuracy, we configure the phase shift pattern in the zeroth layer of the SIM to generate a set of 2D DFT matrices associated with orthogonal spatial frequency bins. Additionally, we analytically evaluate the performance of the proposed SIM-based DOA estimator by deriving a tight upper bound for the mean square error (MSE). Our numerical simulations verify the capability of a well-trained SIM to perform DOA estimation and corroborate our theoretical analysis. It is demonstrated that a SIM having an optical computational speed achieves an MSE of $10^{-4}$ for DOA estimation.
Abstract:This paper presents new aperiodic ambiguity function (AF) lower bounds of unimodular sequences under certain low ambiguity zone. Our key idea, motivated by the Levenshtein correlation bound, is to introduce two weight vectors associated to the delay and Doppler shifts, respectively, and then exploit the upper and lower bounds on the Frobenius norm of the weighted auto- and cross-AF matrices to derive these bounds. Furthermore, the inherent structure properties of aperiodic AF are also utilized in our derivation. The derived bounds are useful design guidelines for optimal AF shaping in modern communication and radar systems.
Abstract:Next-generation wireless systems will offer integrated sensing and communications (ISAC) functionalities not only in order to enable new applications, but also as a means to mitigate challenges such as doubly-dispersive channels, which arise in high mobility scenarios and/or at millimeter-wave (mmWave) and Terahertz (THz) bands. An emerging approach to accomplish these goals is the design of new waveforms, which draw from the inherent relationship between the doubly-dispersive nature of time-variant (TV) channels and the environmental features of scatterers manifested in the form of multi-path delays and Doppler shifts. Examples of such waveforms are the delay-Doppler domain orthogonal time frequency space (OTFS) and the recently proposed chirp domain affine frequency division multiplexing (AFDM), both of which seek to simultaneously combat the detrimental effects of double selectivity and exploit them for the estimation (or sensing) of environmental information. This article aims to provide a consolidated and comprehensive overview of the signal processing techniques required to support reliable ISAC over doubly-dispersive channels in beyond fifth generation (B5G)/sixth generation (6G) systems, with an emphasis on OTFS and AFDM waveforms, as those, together with the traditional orthogonal frequency division multiplexing (OFDM) waveform, suffice to elaborate on the most relevant properties of the trend. The analysis shows that OTFS and AFDM indeed enable significantly improved robustness against inter-carrier interference (ICI) arising from Doppler shifts compared to OFDM. In addition, the inherent delay-Doppler domain orthogonality of the OTFS and AFDM effective channels is found to provide significant advantages for the design and the performance of integrated sensing functionalities.
Abstract:In this paper, we study a multi-user visible light communication (VLC) system assisted with optical reflecting intelligent surface (ORIS). Joint precoding and alignment matrices are designed to maximize the average signal-to-interference plus noise ratio (SINR) criteria. Considering the constraints of the constant mean transmission power of LEDs and the power associated with all users, an optimization problem is proposed. To solve this problem, we utilize an alternating optimization algorithm to optimize the precoding and alignment matrices. The simulation results demonstrate that the resultant SINR of the proposed method outperforms ZF and MMSE precoding algorithms.