Abstract:Quantum sensing technologies have experienced rapid progresses since entering the `second quantum revolution'. Among various candidates, schemes relying on Rydberg atoms exhibit compelling advantages for detecting radio frequency signals. Based on this, Rydberg atomic quantum receivers (RAQRs) have emerged as a promising solution to classical wireless communication and sensing. To harness the advantages and exploit the potential of RAQRs in wireless sensing, we investigate the realization of the direction of arrival (DOA) estimation by RAQRs. Specifically, we first conceive a Rydberg atomic quantum uniform linear array (RAQ-ULA) aided receiver for multi-target detection and propose the corresponding signal model of this sensing system. Furthermore, we propose the Rydberg atomic quantum estimation of signal parameters by designing a rotational invariance based technique termed as RAQ-ESPRIT relying on our model. The proposed algorithm solves the sensor gain mismatch problem, which is due to the presence of the RF local oscillator in the RAQ-ULA and cannot be well addressed by using the conventional ESPRIT. Lastly, we characterize our scheme through numerical simulations.
Abstract:The Rydberg atomic quantum receiver (RAQR) is an emerging quantum precision sensing platform designed for receiving radio frequency (RF) signals. It relies on creation of Rydberg atoms from normal atoms by exciting one or more electrons to a very high energy level, which in turn makes the atom sensitive to RF signals. The RAQR realizes RF-to-optical conversion based on light-atom interaction relying on the so called electromagnetically induced transparency (EIT) and Aulter-Townes splitting (ATS), so that the desired RF signal can be read out optically. The large dipole moments of Rydberg atoms associated with rich choices of Rydberg states and various modulation schemes facilitate an ultra-high sensitivity ($\sim$ nV/cm/$\sqrt{\text{Hz}}$) and an ultra-broadband tunability (near direct-current to Terahertz). RAQRs also exhibit compelling scalability and lend themselves to the construction of innovative, compact receivers. Initial experimental studies have demonstrated their capabilities in classical wireless communications and sensing. To fully harness their potential in a wide variety of applications, we commence by outlining the underlying fundamentals of Rydberg atoms, followed by the principles, structures, and theories of RAQRs. Finally, we conceive Rydberg atomic quantum single-input single-output (RAQ-SISO) and multiple-input multiple-output (RAQ-MIMO) schemes for facilitating the integration of RAQRs with classical wireless systems, and conclude with a set of potent research directions.