Abstract:Through end-to-end training to predict the next token, LLMs have become valuable tools for various tasks. Enhancing their core training in language modeling can improve numerous downstream applications. A successful approach to enhance language modeling uses a separate planning module to predict abstract labels of future sentences and conditions the LM on these predictions. However, this method is non-differentiable, preventing joint end-to-end tuning of the planner with the LM. We propose an effective method to improve this approach by enabling joint fine-tuning of the planner and the LM. We show that a naive way of approximating the gradient of selecting a label via the straight-through estimator is not effective. Instead, we propose to use the predicted label probabilities as mixing weights to condition the LM on a weighted average of label embeddings in a differentiable manner. This not only enables joint fine-tuning of the planner and the LM, but also allows the LM to draw on the full label distribution predicted by the planner, retaining more information. Our experimental results show consistent improvements in perplexity.
Abstract:To assist human fact-checkers, researchers have developed automated approaches for visual misinformation detection. These methods assign veracity scores by identifying inconsistencies between the image and its caption, or by detecting forgeries in the image. However, they neglect a crucial point of the human fact-checking process: identifying the original meta-context of the image. By explaining what is actually true about the image, fact-checkers can better detect misinformation, focus their efforts on check-worthy visual content, engage in counter-messaging before misinformation spreads widely, and make their explanation more convincing. Here, we fill this gap by introducing the task of automated image contextualization. We create 5Pils, a dataset of 1,676 fact-checked images with question-answer pairs about their original meta-context. Annotations are based on the 5 Pillars fact-checking framework. We implement a first baseline that grounds the image in its original meta-context using the content of the image and textual evidence retrieved from the open web. Our experiments show promising results while highlighting several open challenges in retrieval and reasoning. We make our code and data publicly available.
Abstract:Parameter-efficient fine-tuning (PEFT) methods are increasingly used with pre-trained language models (PLMs) for continual learning (CL). These methods involve training a PEFT module for each new task and using similarity-based selection to route modules during inference. However, they face two major limitations: 1) interference with already learned modules and 2) suboptimal routing when composing modules. In this paper, we introduce a method that isolates the training of PEFT modules for task specialization. Then, before evaluation, it learns to compose the previously learned modules by training a router that leverages samples from a small memory. We evaluate our method in two CL setups using several benchmarks. Our results show that our method provides a better composition of PEFT modules, leading to better generalization and performance compared to previous methods.
Abstract:Link prediction models can benefit from incorporating textual descriptions of entities and relations, enabling fully inductive learning and flexibility in dynamic graphs. We address the challenge of also capturing rich structured information about the local neighbourhood of entities and their relations, by introducing a Transformer-based approach that effectively integrates textual descriptions with graph structure, reducing the reliance on resource-intensive text encoders. Our experiments on three challenging datasets show that our Fast-and-Frugal Text-Graph (FnF-TG) Transformers achieve superior performance compared to the previous state-of-the-art methods, while maintaining efficiency and scalability.
Abstract:The ever-growing volume of biomedical publications creates a critical need for efficient knowledge discovery. In this context, we introduce an open-source end-to-end framework designed to construct knowledge around specific diseases directly from raw text. To facilitate research in disease-related knowledge discovery, we create two annotated datasets focused on Rett syndrome and Alzheimer's disease, enabling the identification of semantic relations between biomedical entities. Extensive benchmarking explores various ways to represent relations and entity representations, offering insights into optimal modeling strategies for semantic relation detection and highlighting language models' competence in knowledge discovery. We also conduct probing experiments using different layer representations and attention scores to explore transformers' ability to capture semantic relations.
Abstract:Fine-grained category discovery using only coarse-grained supervision is a cost-effective yet challenging task. Previous training methods focus on aligning query samples with positive samples and distancing them from negatives. They often neglect intra-category and inter-category semantic similarities of fine-grained categories when navigating sample distributions in the embedding space. Furthermore, some evaluation techniques that rely on pre-collected test samples are inadequate for real-time applications. To address these shortcomings, we introduce a method that successfully detects fine-grained clusters of semantically similar texts guided by a novel objective function. The method uses semantic similarities in a logarithmic space to guide sample distributions in the Euclidean space and to form distinct clusters that represent fine-grained categories. We also propose a centroid inference mechanism to support real-time applications. The efficacy of the method is both theoretically justified and empirically confirmed on three benchmark tasks. The proposed objective function is integrated in multiple contrastive learning based neural models. Its results surpass existing state-of-the-art approaches in terms of Accuracy, Adjusted Rand Index and Normalized Mutual Information of the detected fine-grained categories. Code and data will be available at https://github.com/XX upon publication.
Abstract:This work explores knowledge distillation (KD) for visually-rich document (VRD) applications such as document layout analysis (DLA) and document image classification (DIC). While VRD research is dependent on increasingly sophisticated and cumbersome models, the field has neglected to study efficiency via model compression. Here, we design a KD experimentation methodology for more lean, performant models on document understanding (DU) tasks that are integral within larger task pipelines. We carefully selected KD strategies (response-based, feature-based) for distilling knowledge to and from backbones with different architectures (ResNet, ViT, DiT) and capacities (base, small, tiny). We study what affects the teacher-student knowledge gap and find that some methods (tuned vanilla KD, MSE, SimKD with an apt projector) can consistently outperform supervised student training. Furthermore, we design downstream task setups to evaluate covariate shift and the robustness of distilled DLA models on zero-shot layout-aware document visual question answering (DocVQA). DLA-KD experiments result in a large mAP knowledge gap, which unpredictably translates to downstream robustness, accentuating the need to further explore how to efficiently obtain more semantic document layout awareness.
Abstract:Few-shot named entity recognition (NER) systems recognize entities using a few labeled training examples. The general pipeline consists of a span detector to identify entity spans in text and an entity-type classifier to assign types to entities. Current span detectors rely on extensive manual labeling to guide training. Almost every span detector requires initial training on basic span features followed by adaptation to task-specific features. This process leads to repetitive training of the basic span features among span detectors. Additionally, metric-based entity-type classifiers, such as prototypical networks, typically employ a specific metric that gauges the distance between the query sample and entity-type referents, ultimately assigning the most probable entity type to the query sample. However, these classifiers encounter the sample dependency problem, primarily stemming from the limited samples available for each entity-type referent. To address these challenges, we proposed an improved few-shot NER pipeline. First, we introduce a steppingstone span detector that is pre-trained on open-domain Wikipedia data. It can be used to initialize the pipeline span detector to reduce the repetitive training of basic features. Second, we leverage a large language model (LLM) to set reliable entity-type referents, eliminating reliance on few-shot samples of each type. Our model exhibits superior performance with fewer training steps and human-labeled data compared with baselines, as demonstrated through extensive experiments on various datasets. Particularly in fine-grained few-shot NER settings, our model outperforms strong baselines, including ChatGPT. We will publicly release the code, datasets, LLM outputs, and model checkpoints.
Abstract:This work addresses the need for a balanced approach between performance and efficiency in scalable production environments for visually-rich document understanding (VDU) tasks. Currently, there is a reliance on large document foundation models that offer advanced capabilities but come with a heavy computational burden. In this paper, we propose a multimodal early exit (EE) model design that incorporates various training strategies, exit layer types and placements. Our goal is to achieve a Pareto-optimal balance between predictive performance and efficiency for multimodal document image classification. Through a comprehensive set of experiments, we compare our approach with traditional exit policies and showcase an improved performance-efficiency trade-off. Our multimodal EE design preserves the model's predictive capabilities, enhancing both speed and latency. This is achieved through a reduction of over 20% in latency, while fully retaining the baseline accuracy. This research represents the first exploration of multimodal EE design within the VDU community, highlighting as well the effectiveness of calibration in improving confidence scores for exiting at different layers. Overall, our findings contribute to practical VDU applications by enhancing both performance and efficiency.
Abstract:While extensively explored in text-based tasks, Named Entity Recognition (NER) remains largely neglected in spoken language understanding. Existing resources are limited to a single, English-only dataset. This paper addresses this gap by introducing MSNER, a freely available, multilingual speech corpus annotated with named entities. It provides annotations to the VoxPopuli dataset in four languages (Dutch, French, German, and Spanish). We have also releasing an efficient annotation tool that leverages automatic pre-annotations for faster manual refinement. This results in 590 and 15 hours of silver-annotated speech for training and validation, alongside a 17-hour, manually-annotated evaluation set. We further provide an analysis comparing silver and gold annotations. Finally, we present baseline NER models to stimulate further research on this newly available dataset.