Abstract:Object-centric representation learning has recently been successfully applied to real-world datasets. This success can be attributed to pretrained non-object-centric foundation models, whose features serve as reconstruction targets for slot attention. However, targets must remain frozen throughout the training, which sets an upper bound on the performance object-centric models can attain. Attempts to update the target encoder by bootstrapping result in large performance drops, which can be attributed to its lack of object-centric inductive biases, causing the object-centric model's encoder to drift away from representations useful as reconstruction targets. To address these limitations, we propose Object-CEntric Pretraining by Target Encoder BOotstrapping, a self-distillation setup for training object-centric models from scratch, on real-world data, for the first time ever. In OCEBO, the target encoder is updated as an exponential moving average of the object-centric model, thus explicitly being enriched with object-centric inductive biases introduced by slot attention while removing the upper bound on performance present in other models. We mitigate the slot collapse caused by random initialization of the target encoder by introducing a novel cross-view patch filtering approach that limits the supervision to sufficiently informative patches. When pretrained on 241k images from COCO, OCEBO achieves unsupervised object discovery performance comparable to that of object-centric models with frozen non-object-centric target encoders pretrained on hundreds of millions of images. The code and pretrained models are publicly available at https://github.com/djukicn/ocebo.
Abstract:Differentiable rendering enables efficient optimization by allowing gradients to be computed through the rendering process, facilitating 3D reconstruction, inverse rendering and neural scene representation learning. To ensure differentiability, existing solutions approximate or re-formulate traditional rendering operations using smooth, probabilistic proxies such as volumes or Gaussian primitives. Consequently, they struggle to preserve sharp edges due to the lack of explicit boundary definitions. We present a novel hybrid representation, B\'ezier Gaussian Triangle (BG-Triangle), that combines B\'ezier triangle-based vector graphics primitives with Gaussian-based probabilistic models, to maintain accurate shape modeling while conducting resolution-independent differentiable rendering. We present a robust and effective discontinuity-aware rendering technique to reduce uncertainties at object boundaries. We also employ an adaptive densification and pruning scheme for efficient training while reliably handling level-of-detail (LoD) variations. Experiments show that BG-Triangle achieves comparable rendering quality as 3DGS but with superior boundary preservation. More importantly, BG-Triangle uses a much smaller number of primitives than its alternatives, showcasing the benefits of vectorized graphics primitives and the potential to bridge the gap between classic and emerging representations.
Abstract:Audio-visual understanding is a rapidly evolving field that seeks to integrate and interpret information from both auditory and visual modalities. Despite recent advances in multi-modal learning, existing benchmarks often suffer from strong visual bias -- where answers can be inferred from visual data alone -- and provide only aggregate scores that conflate multiple sources of error. This makes it difficult to determine whether models struggle with visual understanding, audio interpretation, or audio-visual alignment. In this work, we introduce DAVE (Diagnostic Audio Visual Evaluation), a novel benchmark dataset designed to systematically evaluate audio-visual models across controlled challenges. DAVE alleviates existing limitations by (i) ensuring both modalities are necessary to answer correctly and (ii) decoupling evaluation into atomic subcategories. Our detailed analysis of state-of-the-art models reveals specific failure modes and provides targeted insights for improvement. By offering this standardized diagnostic framework, we aim to facilitate more robust development of audio-visual models. The dataset is released: https://github.com/gorjanradevski/dave
Abstract:Personalized image generation via text prompts has great potential to improve daily life and professional work by facilitating the creation of customized visual content. The aim of image personalization is to create images based on a user-provided subject while maintaining both consistency of the subject and flexibility to accommodate various textual descriptions of that subject. However, current methods face challenges in ensuring fidelity to the text prompt while not overfitting to the training data. In this work, we introduce a novel training pipeline that incorporates an attractor to filter out distractions in training images, allowing the model to focus on learning an effective representation of the personalized subject. Moreover, current evaluation methods struggle due to the lack of a dedicated test set. The evaluation set-up typically relies on the training data of the personalization task to compute text-image and image-image similarity scores, which, while useful, tend to overestimate performance. Although human evaluations are commonly used as an alternative, they often suffer from bias and inconsistency. To address these issues, we curate a diverse and high-quality test set with well-designed prompts. With this new benchmark, automatic evaluation metrics can reliably assess model performance
Abstract:Continual learning aims to enable models to adapt to new datasets without losing performance on previously learned data, often assuming that prior data is no longer available. However, in many practical scenarios, both old and new data are accessible. In such cases, good performance on both datasets is typically achieved by abandoning the model trained on the previous data and re-training a new model from scratch on both datasets. This training from scratch is computationally expensive. In contrast, methods that leverage the previously trained model and old data are worthy of investigation, as they could significantly reduce computational costs. Our evaluation framework quantifies the computational savings of such methods while maintaining or exceeding the performance of training from scratch. We identify key optimization aspects -- initialization, regularization, data selection, and hyper-parameters -- that can each contribute to reducing computational costs. For each aspect, we propose effective first-step methods that already yield substantial computational savings. By combining these methods, we achieve up to 2.7x reductions in computation time across various computer vision tasks, highlighting the potential for further advancements in this area.
Abstract:Following the success in NLP, the best vision models are now in the billion parameter ranges. Adapting these large models to a target distribution has become computationally and economically prohibitive. Addressing this challenge, we introduce UpStep, an Unsupervised Parameter-efficient Source-free post-pretraining approach, designed to efficiently adapt a base model from a source domain to a target domain: i) we design a self-supervised training scheme to adapt a pretrained model on an unlabeled target domain in a setting where source domain data is unavailable. Such source-free setting comes with the risk of catastrophic forgetting, hence, ii) we propose center vector regularization (CVR), a set of auxiliary operations that minimize catastrophic forgetting and additionally reduces the computational cost by skipping backpropagation in 50\% of the training iterations. Finally iii) we perform this adaptation process in a parameter-efficient way by adapting the pretrained model through low-rank adaptation methods, resulting in a fraction of parameters to optimize. We utilize various general backbone architectures, both supervised and unsupervised, trained on Imagenet as our base model and adapt them to a diverse set of eight target domains demonstrating the adaptability and generalizability of our proposed approach.
Abstract:Image aesthetic assessment (IAA) evaluates image aesthetics, a task complicated by image diversity and user subjectivity. Current approaches address this in two stages: Generic IAA (GIAA) models estimate mean aesthetic scores, while Personal IAA (PIAA) models adapt GIAA using transfer learning to incorporate user subjectivity. However, a theoretical understanding of transfer learning between GIAA and PIAA, particularly concerning the impact of group composition, group size, aesthetic differences between groups and individuals, and demographic correlations, is lacking. This work establishes a theoretical foundation for IAA, proposing a unified model that encodes individual characteristics in a distributional format for both individual and group assessments. We show that transferring from GIAA to PIAA involves extrapolation, while the reverse involves interpolation, which is generally more effective for machine learning. Experiments with varying group compositions, including sub-sampling by group size and disjoint demographics, reveal significant performance variation even for GIAA, indicating that mean scores do not fully eliminate individual subjectivity. Performance variations and Gini index analysis reveal education as the primary factor influencing aesthetic differences, followed by photography and art experience, with stronger individual subjectivity observed in artworks than in photos. Our model uniquely supports both GIAA and PIAA, enhancing generalization across demographics.
Abstract:We assess the vulnerability of multimodal large language models to misleading visualizations - charts that distort the underlying data using techniques such as truncated or inverted axes, leading readers to draw inaccurate conclusions that may support misinformation or conspiracy theories. Our analysis shows that these distortions severely harm multimodal large language models, reducing their question-answering accuracy to the level of the random baseline. To mitigate this vulnerability, we introduce six inference-time methods to improve performance of MLLMs on misleading visualizations while preserving their accuracy on non-misleading ones. The most effective approach involves (1) extracting the underlying data table and (2) using a text-only large language model to answer questions based on the table. This method improves performance on misleading visualizations by 15.4 to 19.6 percentage points.
Abstract:Continual learning (CL) is the sub-field of machine learning concerned with accumulating knowledge in dynamic environments. So far, CL research has mainly focused on incremental classification tasks, where models learn to classify new categories while retaining knowledge of previously learned ones. Here, we argue that maintaining such a focus limits both theoretical development and practical applicability of CL methods. Through a detailed analysis of concrete examples - including multi-target classification, robotics with constrained output spaces, learning in continuous task domains, and higher-level concept memorization - we demonstrate how current CL approaches often fail when applied beyond standard classification. We identify three fundamental challenges: (C1) the nature of continuity in learning problems, (C2) the choice of appropriate spaces and metrics for measuring similarity, and (C3) the role of learning objectives beyond classification. For each challenge, we provide specific recommendations to help move the field forward, including formalizing temporal dynamics through distribution processes, developing principled approaches for continuous task spaces, and incorporating density estimation and generative objectives. In so doing, this position paper aims to broaden the scope of CL research while strengthening its theoretical foundations, making it more applicable to real-world problems.
Abstract:Many machine learning techniques rely on minimizing the covariance between output feature dimensions to extract minimally redundant representations from data. However, these methods do not eliminate all dependencies/redundancies, as linearly uncorrelated variables can still exhibit nonlinear relationships. This work provides a differentiable and scalable algorithm for dependence minimization that goes beyond linear pairwise decorrelation. Our method employs an adversarial game where small networks identify dependencies among feature dimensions, while the encoder exploits this information to reduce dependencies. We provide empirical evidence of the algorithm's convergence and demonstrate its utility in three applications: extending PCA to nonlinear decorrelation, improving the generalization of image classification methods, and preventing dimensional collapse in self-supervised representation learning.