Abstract:This study presents a novel evaluation framework for the Vision-Language Navigation (VLN) task. It aims to diagnose current models for various instruction categories at a finer-grained level. The framework is structured around the context-free grammar (CFG) of the task. The CFG serves as the basis for the problem decomposition and the core premise of the instruction categories design. We propose a semi-automatic method for CFG construction with the help of Large-Language Models (LLMs). Then, we induct and generate data spanning five principal instruction categories (i.e. direction change, landmark recognition, region recognition, vertical movement, and numerical comprehension). Our analysis of different models reveals notable performance discrepancies and recurrent issues. The stagnation of numerical comprehension, heavy selective biases over directional concepts, and other interesting findings contribute to the development of future language-guided navigation systems.
Abstract:Novel view synthesis of indoor scenes can be achieved by capturing a monocular video sequence of the environment. However, redundant information caused by artificial movements in the input video data reduces the efficiency of scene modeling. In this work, we tackle this challenge from the perspective of camera selection. We begin by constructing a similarity matrix that incorporates both the spatial diversity of the cameras and the semantic variation of the images. Based on this matrix, we use the Intra-List Diversity (ILD) metric to assess camera redundancy, formulating the camera selection task as an optimization problem. Then we apply a diversity-based sampling algorithm to optimize the camera selection. We also develop a new dataset, IndoorTraj, which includes long and complex camera movements captured by humans in virtual indoor environments, closely mimicking real-world scenarios. Experimental results demonstrate that our strategy outperforms other approaches under time and memory constraints. Remarkably, our method achieves performance comparable to models trained on the full dataset, while using only an average of 15% of the frames and 75% of the allotted time.
Abstract:Recent advancements in photo-realistic novel view synthesis have been significantly driven by Gaussian Splatting (3DGS). Nevertheless, the explicit nature of 3DGS data entails considerable storage requirements, highlighting a pressing need for more efficient data representations. To address this, we present Implicit Gaussian Splatting (IGS), an innovative hybrid model that integrates explicit point clouds with implicit feature embeddings through a multi-level tri-plane architecture. This architecture features 2D feature grids at various resolutions across different levels, facilitating continuous spatial domain representation and enhancing spatial correlations among Gaussian primitives. Building upon this foundation, we introduce a level-based progressive training scheme, which incorporates explicit spatial regularization. This method capitalizes on spatial correlations to enhance both the rendering quality and the compactness of the IGS representation. Furthermore, we propose a novel compression pipeline tailored for both point clouds and 2D feature grids, considering the entropy variations across different levels. Extensive experimental evaluations demonstrate that our algorithm can deliver high-quality rendering using only a few MBs, effectively balancing storage efficiency and rendering fidelity, and yielding results that are competitive with the state-of-the-art.
Abstract:Inverse rendering aims to reconstruct the scene properties of objects solely from multiview images. However, it is an ill-posed problem prone to producing ambiguous estimations deviating from physically accurate representations. In this paper, we utilize Neural Microfacet Fields (NMF), a state-of-the-art neural inverse rendering method to illustrate the inherent ambiguity. We propose an evaluation framework to assess the degree of compensation or interaction between the estimated scene properties, aiming to explore the mechanisms behind this ill-posed problem and potential mitigation strategies. Specifically, we introduce artificial perturbations to one scene property and examine how adjusting another property can compensate for these perturbations. To facilitate such experiments, we introduce a disentangled NMF where material properties are independent. The experimental findings underscore the intrinsic ambiguity present in neural inverse rendering and highlight the importance of providing additional guidance through geometry, material, and illumination priors.
Abstract:Adopting Neural Radiance Fields (NeRF) to long-duration dynamic sequences has been challenging. Existing methods struggle to balance between quality and storage size and encounter difficulties with complex scene changes such as topological changes and large motions. To tackle these issues, we propose a novel neural video-based radiance fields (NeVRF) representation. NeVRF marries neural radiance field with image-based rendering to support photo-realistic novel view synthesis on long-duration dynamic inward-looking scenes. We introduce a novel multi-view radiance blending approach to predict radiance directly from multi-view videos. By incorporating continual learning techniques, NeVRF can efficiently reconstruct frames from sequential data without revisiting previous frames, enabling long-duration free-viewpoint video. Furthermore, with a tailored compression approach, NeVRF can compactly represent dynamic scenes, making dynamic radiance fields more practical in real-world scenarios. Our extensive experiments demonstrate the effectiveness of NeVRF in enabling long-duration sequence rendering, sequential data reconstruction, and compact data storage.
Abstract:Neural Radiance Fields (NeRF) revolutionize the realm of visual media by providing photorealistic Free-Viewpoint Video (FVV) experiences, offering viewers unparalleled immersion and interactivity. However, the technology's significant storage requirements and the computational complexity involved in generation and rendering currently limit its broader application. To close this gap, this paper presents Temporal Tri-Plane Radiance Fields (TeTriRF), a novel technology that significantly reduces the storage size for Free-Viewpoint Video (FVV) while maintaining low-cost generation and rendering. TeTriRF introduces a hybrid representation with tri-planes and voxel grids to support scaling up to long-duration sequences and scenes with complex motions or rapid changes. We propose a group training scheme tailored to achieving high training efficiency and yielding temporally consistent, low-entropy scene representations. Leveraging these properties of the representations, we introduce a compression pipeline with off-the-shelf video codecs, achieving an order of magnitude less storage size compared to the state-of-the-art. Our experiments demonstrate that TeTriRF can achieve competitive quality with a higher compression rate.
Abstract:Neural Radiance Fields (NeRFs) excel in photorealistically rendering static scenes. However, rendering dynamic, long-duration radiance fields on ubiquitous devices remains challenging, due to data storage and computational constraints. In this paper, we introduce VideoRF, the first approach to enable real-time streaming and rendering of dynamic radiance fields on mobile platforms. At the core is a serialized 2D feature image stream representing the 4D radiance field all in one. We introduce a tailored training scheme directly applied to this 2D domain to impose the temporal and spatial redundancy of the feature image stream. By leveraging the redundancy, we show that the feature image stream can be efficiently compressed by 2D video codecs, which allows us to exploit video hardware accelerators to achieve real-time decoding. On the other hand, based on the feature image stream, we propose a novel rendering pipeline for VideoRF, which has specialized space mappings to query radiance properties efficiently. Paired with a deferred shading model, VideoRF has the capability of real-time rendering on mobile devices thanks to its efficiency. We have developed a real-time interactive player that enables online streaming and rendering of dynamic scenes, offering a seamless and immersive free-viewpoint experience across a range of devices, from desktops to mobile phones.
Abstract:Neural Radiance Fields (NeRFs) have revolutionized the field of novel view synthesis, demonstrating remarkable performance. However, the modeling and rendering of reflective objects remain challenging problems. Recent methods have shown significant improvements over the baselines in handling reflective scenes, albeit at the expense of efficiency. In this work, we aim to strike a balance between efficiency and quality. To this end, we investigate an implicit-explicit approach based on conventional volume rendering to enhance the reconstruction quality and accelerate the training and rendering processes. We adopt an efficient density-based grid representation and reparameterize the reflected radiance in our pipeline. Our proposed reflection-aware approach achieves a competitive quality efficiency trade-off compared to competing methods. Based on our experimental results, we propose and discuss hypotheses regarding the factors influencing the results of density-based methods for reconstructing reflective objects. The source code is available at https://github.com/gkouros/ref-dvgo.
Abstract:The success of the Neural Radiance Fields (NeRFs) for modeling and free-view rendering static objects has inspired numerous attempts on dynamic scenes. Current techniques that utilize neural rendering for facilitating free-view videos (FVVs) are restricted to either offline rendering or are capable of processing only brief sequences with minimal motion. In this paper, we present a novel technique, Residual Radiance Field or ReRF, as a highly compact neural representation to achieve real-time FVV rendering on long-duration dynamic scenes. ReRF explicitly models the residual information between adjacent timestamps in the spatial-temporal feature space, with a global coordinate-based tiny MLP as the feature decoder. Specifically, ReRF employs a compact motion grid along with a residual feature grid to exploit inter-frame feature similarities. We show such a strategy can handle large motions without sacrificing quality. We further present a sequential training scheme to maintain the smoothness and the sparsity of the motion/residual grids. Based on ReRF, we design a special FVV codec that achieves three orders of magnitudes compression rate and provides a companion ReRF player to support online streaming of long-duration FVVs of dynamic scenes. Extensive experiments demonstrate the effectiveness of ReRF for compactly representing dynamic radiance fields, enabling an unprecedented free-viewpoint viewing experience in speed and quality.
Abstract:We have recently seen tremendous progress in the neural advances for photo-real human modeling and rendering. However, it's still challenging to integrate them into an existing mesh-based pipeline for downstream applications. In this paper, we present a comprehensive neural approach for high-quality reconstruction, compression, and rendering of human performances from dense multi-view videos. Our core intuition is to bridge the traditional animated mesh workflow with a new class of highly efficient neural techniques. We first introduce a neural surface reconstructor for high-quality surface generation in minutes. It marries the implicit volumetric rendering of the truncated signed distance field (TSDF) with multi-resolution hash encoding. We further propose a hybrid neural tracker to generate animated meshes, which combines explicit non-rigid tracking with implicit dynamic deformation in a self-supervised framework. The former provides the coarse warping back into the canonical space, while the latter implicit one further predicts the displacements using the 4D hash encoding as in our reconstructor. Then, we discuss the rendering schemes using the obtained animated meshes, ranging from dynamic texturing to lumigraph rendering under various bandwidth settings. To strike an intricate balance between quality and bandwidth, we propose a hierarchical solution by first rendering 6 virtual views covering the performer and then conducting occlusion-aware neural texture blending. We demonstrate the efficacy of our approach in a variety of mesh-based applications and photo-realistic free-view experiences on various platforms, i.e., inserting virtual human performances into real environments through mobile AR or immersively watching talent shows with VR headsets.