Abstract:Through end-to-end training to predict the next token, LLMs have become valuable tools for various tasks. Enhancing their core training in language modeling can improve numerous downstream applications. A successful approach to enhance language modeling uses a separate planning module to predict abstract labels of future sentences and conditions the LM on these predictions. However, this method is non-differentiable, preventing joint end-to-end tuning of the planner with the LM. We propose an effective method to improve this approach by enabling joint fine-tuning of the planner and the LM. We show that a naive way of approximating the gradient of selecting a label via the straight-through estimator is not effective. Instead, we propose to use the predicted label probabilities as mixing weights to condition the LM on a weighted average of label embeddings in a differentiable manner. This not only enables joint fine-tuning of the planner and the LM, but also allows the LM to draw on the full label distribution predicted by the planner, retaining more information. Our experimental results show consistent improvements in perplexity.
Abstract:Argument structure learning~(ASL) entails predicting relations between arguments. Because it can structure a document to facilitate its understanding, it has been widely applied in many fields~(medical, commercial, and scientific domains). Despite its broad utilization, ASL remains a challenging task because it involves examining the complex relationships between the sentences in a potentially unstructured discourse. To resolve this problem, we have developed a simple yet effective approach called Dual-tower Multi-scale cOnvolution neural Network~(DMON) for the ASL task. Specifically, we organize arguments into a relationship matrix that together with the argument embeddings forms a relationship tensor and design a mechanism to capture relations with contextual arguments. Experimental results on three different-domain argument mining datasets demonstrate that our framework outperforms state-of-the-art models. The code is available at https://github.com/VRCMF/DMON.git .
Abstract:Decoding continuous language from brain activity is a formidable yet promising field of research. It is particularly significant for aiding people with speech disabilities to communicate through brain signals. This field addresses the complex task of mapping brain signals to text. The previous best attempt reverse-engineered this process in an indirect way: it began by learning to encode brain activity from text and then guided text generation by aligning with predicted brain responses. In contrast, we propose a simple yet effective method that guides text reconstruction by directly comparing them with the predicted text embeddings mapped from brain activities. Comprehensive experiments reveal that our method significantly outperforms the current state-of-the-art model, showing average improvements of 77% and 54% on BLEU and METEOR scores. We further validate the proposed modules through detailed ablation studies and case analyses and highlight a critical correlation: the more precisely we map brain activities to text embeddings, the better the text reconstruction results. Such insight can simplify the task of reconstructing language from brain activities for future work, emphasizing the importance of improving brain-to-text-embedding mapping techniques.
Abstract:Despite differing from the human language processing mechanism in implementation and algorithms, current language models demonstrate remarkable human-like or surpassing language capabilities. Should computational language models be employed in studying the brain, and if so, when and how? To delve into this topic, this paper reviews efforts in using computational models for brain research, highlighting emerging trends. To ensure a fair comparison, the paper evaluates various computational models using consistent metrics on the same dataset. Our analysis reveals that no single model outperforms others on all datasets, underscoring the need for rich testing datasets and rigid experimental control to draw robust conclusions in studies involving computational models.
Abstract:In the pursuit to understand the intricacies of human brain's visual processing, reconstructing dynamic visual experiences from brain activities emerges as a challenging yet fascinating endeavor. While recent advancements have achieved success in reconstructing static images from non-invasive brain recordings, the domain of translating continuous brain activities into video format remains underexplored. In this work, we introduce NeuroCine, a novel dual-phase framework to targeting the inherent challenges of decoding fMRI data, such as noises, spatial redundancy and temporal lags. This framework proposes spatial masking and temporal interpolation-based augmentation for contrastive learning fMRI representations and a diffusion model enhanced by dependent prior noise for video generation. Tested on a publicly available fMRI dataset, our method shows promising results, outperforming the previous state-of-the-art models by a notable margin of ${20.97\%}$, ${31.00\%}$ and ${12.30\%}$ respectively on decoding the brain activities of three subjects in the fMRI dataset, as measured by SSIM. Additionally, our attention analysis suggests that the model aligns with existing brain structures and functions, indicating its biological plausibility and interpretability.
Abstract:To understand the algorithm that supports the human brain's language representation, previous research has attempted to predict neural responses to linguistic stimuli using embeddings generated by artificial neural networks (ANNs), a process known as neural encoding. However, most of these studies have focused on probing neural representations of Germanic languages, such as English, with unsupervised ANNs. In this paper, we propose to bridge the gap between human brain and supervised ANN representations of the Chinese language. Specifically, we investigate how task tuning influences a pretained Transformer for neural encoding and which tasks lead to the best encoding performances. We generate supervised representations on eight Natural Language Understanding (NLU) tasks using prompt-tuning, a technique that is seldom explored in neural encoding for language. We demonstrate that prompt-tuning yields representations that better predict neural responses to Chinese stimuli than traditional fine-tuning on four tasks. Furthermore, we discover that tasks that require a fine-grained processing of concepts and entities lead to representations that are most predictive of brain activation patterns. Additionally, we reveal that the proportion of tuned parameters highly influences the neural encoding performance of fine-tuned models. Overall, our experimental findings could help us better understand the relationship between supervised artificial and brain language representations.
Abstract:To decipher the algorithm underlying the human brain's language representation, previous work probed brain responses to language input with pre-trained artificial neural network (ANN) models fine-tuned on NLU tasks. However, full fine-tuning generally updates the entire parametric space and distorts pre-trained features, cognitively inconsistent with the brain's robust multi-task learning ability. Prompt-tuning, in contrast, protects pre-trained weights and learns task-specific embeddings to fit a task. Could prompt-tuning generate representations that better account for the brain's language representations than fine-tuning? If so, what kind of NLU task leads a pre-trained model to better decode the information represented in the human brain? We investigate these questions by comparing prompt-tuned and fine-tuned representations in neural decoding, that is predicting the linguistic stimulus from the brain activities evoked by the stimulus. We find that on none of the 10 NLU tasks, full fine-tuning significantly outperforms prompt-tuning in neural decoding, implicating that a more brain-consistent tuning method yields representations that better correlate with brain data. Moreover, we identify that tasks dealing with fine-grained concept meaning yield representations that better decode brain activation patterns than other tasks, especially the syntactic chunking task. This indicates that our brain encodes more fine-grained concept information than shallow syntactic information when representing languages.
Abstract:Reconstructing visual stimuli from human brain activities provides a promising opportunity to advance our understanding of the brain's visual system and its connection with computer vision models. Although deep generative models have been employed for this task, the challenge of generating high-quality images with accurate semantics persists due to the intricate underlying representations of brain signals and the limited availability of parallel data. In this paper, we propose a two-phase framework named Contrast and Diffuse (CnD) to decode realistic images from functional magnetic resonance imaging (fMRI) recordings. In the first phase, we acquire representations of fMRI data through self-supervised contrastive learning. In the second phase, the encoded fMRI representations condition the diffusion model to reconstruct visual stimulus through our proposed concept-aware conditioning method. Experimental results show that CnD reconstructs highly plausible images on challenging benchmarks. We also provide a quantitative interpretation of the connection between the latent diffusion model (LDM) components and the human brain's visual system. In summary, we present an effective approach for reconstructing visual stimuli based on human brain activity and offer a novel framework to understand the relationship between the diffusion model and the human brain visual system.
Abstract:Decoding visual stimuli from neural responses recorded by functional Magnetic Resonance Imaging (fMRI) presents an intriguing intersection between cognitive neuroscience and machine learning, promising advancements in understanding human visual perception and building non-invasive brain-machine interfaces. However, the task is challenging due to the noisy nature of fMRI signals and the intricate pattern of brain visual representations. To mitigate these challenges, we introduce a two-phase fMRI representation learning framework. The first phase pre-trains an fMRI feature learner with a proposed Double-contrastive Mask Auto-encoder to learn denoised representations. The second phase tunes the feature learner to attend to neural activation patterns most informative for visual reconstruction with guidance from an image auto-encoder. The optimized fMRI feature learner then conditions a latent diffusion model to reconstruct image stimuli from brain activities. Experimental results demonstrate our model's superiority in generating high-resolution and semantically accurate images, substantially exceeding previous state-of-the-art methods by 39.34% in the 50-way-top-1 semantic classification accuracy. Our research invites further exploration of the decoding task's potential and contributes to the development of non-invasive brain-machine interfaces.