National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, China, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
Abstract:Large Language Models (LLMs) have demonstrated promising potential in providing empathetic support during interactions. However, their responses often become verbose or overly formulaic, failing to adequately address the diverse emotional support needs of real-world scenarios. To tackle this challenge, we propose an innovative strategy-enhanced role-playing framework, designed to simulate authentic emotional support conversations. Specifically, our approach unfolds in two steps: (1) Strategy-Enhanced Role-Playing Interactions, which involve three pivotal roles -- Seeker, Strategy Counselor, and Supporter -- engaging in diverse scenarios to emulate real-world interactions and promote a broader range of dialogues; and (2) Emotional Support Agent Training, achieved through fine-tuning LLMs using our specially constructed dataset. Within this framework, we develop the \textbf{ServeForEmo} dataset, comprising an extensive collection of 3.7K+ multi-turn dialogues and 62.8K+ utterances. We further present \textbf{SweetieChat}, an emotional support agent capable of handling diverse open-domain scenarios. Extensive experiments and human evaluations confirm the framework's effectiveness in enhancing emotional support, highlighting its unique ability to provide more nuanced and tailored assistance.
Abstract:During the development of large language models (LLMs), pre-training data play a critical role in shaping LLMs' capabilities. In recent years several large-scale and high-quality pre-training datasets have been released to accelerate the research of LLMs, including ChineseWebText1.0, C4, Pile, WanJuan, MAPCC and others. However, as LLMs continue to evolve, focus has increasingly shifted to domain-specific capabilities and safety concerns, making those previous coarse-grained texts insufficient for meeting training requirements. Furthermore, fine-grained information, such as quality, domain and toxicity, is becoming increasingly important in building powerful and reliable LLMs for various scenarios. To address these challenges, in this paper we propose a new tool-chain called MDFG-tool for constructing large-scale and high-quality Chinese datasets with multi-dimensional and fine-grained information. First, we employ manually crafted rules to discard explicit noisy texts from raw contents. Second, the quality evaluation model, domain classifier, and toxicity evaluation model are well-designed to assess the remaining cleaned data respectively. Finally, we integrate these three types of fine-grained information for each text. With this approach, we release the largest, high-quality and fine-grained Chinese text ChineseWebText2.0, which consists of 3.8TB and each text is associated with a quality score, domain labels, a toxicity label and a toxicity score, facilitating the LLM researchers to select data based on various types of fine-grained information. The data, codes and the tool-chain are available on this website https://github.com/CASIA-LM/ChineseWebText-2.0
Abstract:Large Language Models (LLMs) have achieved impressive results across numerous NLP tasks but still encounter difficulties in machine translation. Traditional methods to improve translation have typically involved fine-tuning LLMs using parallel corpora. However, vanilla fine-tuning often leads to catastrophic forgetting of the instruction-following capabilities and alignment with human preferences, compromising their broad general abilities and introducing potential security risks. These abilities, which are developed using proprietary and unavailable training data, make existing continual instruction tuning methods ineffective. To overcome this issue, we propose a novel approach called RaDis (Rationale Distillation). RaDis harnesses the strong generative capabilities of LLMs to create rationales for training data, which are then "replayed" to prevent forgetting. These rationales encapsulate general knowledge and safety principles, acting as self-distillation targets to regulate the training process. By jointly training on both reference translations and self-generated rationales, the model can learn new translation skills while preserving its overall general abilities. Extensive experiments demonstrate that our method enhances machine translation performance while maintaining the broader capabilities of LLMs across other tasks. This work presents a pathway for creating more versatile LLMs that excel in specialized tasks without compromising generality and safety.
Abstract:Large Language Models (LLMs) have achieved state-of-the-art performance across numerous tasks. However, these advancements have predominantly benefited "first-class" languages such as English and Chinese, leaving many other languages underrepresented. This imbalance, while limiting broader applications, generates a natural preference ranking between languages, offering an opportunity to bootstrap the multilingual capabilities of LLM in a self-improving manner. Thus, we propose $\textit{Language Imbalance Driven Rewarding}$, where the inherent imbalance between dominant and non-dominant languages within LLMs is leveraged as a reward signal. Iterative DPO training demonstrates that this approach not only enhances LLM performance in non-dominant languages but also improves the dominant language's capacity, thereby yielding an iterative reward signal. Fine-tuning Meta-Llama-3-8B-Instruct over two iterations of this approach results in continuous improvements in multilingual performance across instruction-following and arithmetic reasoning tasks, evidenced by an average improvement of 7.46% win rate on the X-AlpacaEval leaderboard and 13.9% accuracy on the MGSM benchmark. This work serves as an initial exploration, paving the way for multilingual self-improvement of LLMs.
Abstract:The recent release of GPT-4o showcased the potential of end-to-end multimodal models, not just in terms of low latency but also in their ability to understand and generate expressive speech with rich emotions. While the details are unknown to the open research community, it likely involves significant amounts of curated data and compute, neither of which is readily accessible. In this paper, we present BLSP-Emo (Bootstrapped Language-Speech Pretraining with Emotion support), a novel approach to developing an end-to-end speech-language model capable of understanding both semantics and emotions in speech and generate empathetic responses. BLSP-Emo utilizes existing speech recognition (ASR) and speech emotion recognition (SER) datasets through a two-stage process. The first stage focuses on semantic alignment, following recent work on pretraining speech-language models using ASR data. The second stage performs emotion alignment with the pretrained speech-language model on an emotion-aware continuation task constructed from SER data. Our experiments demonstrate that the BLSP-Emo model excels in comprehending speech and delivering empathetic responses, both in instruction-following tasks and conversations.
Abstract:Simultaneous Machine Translation (SiMT) generates target outputs while receiving stream source inputs and requires a read/write policy to decide whether to wait for the next source token or generate a new target token, whose decisions form a \textit{decision path}. Existing SiMT methods, which learn the policy by exploring various decision paths in training, face inherent limitations. These methods not only fail to precisely optimize the policy due to the inability to accurately assess the individual impact of each decision on SiMT performance, but also cannot sufficiently explore all potential paths because of their vast number. Besides, building decision paths requires unidirectional encoders to simulate streaming source inputs, which impairs the translation quality of SiMT models. To solve these issues, we propose \textbf{S}elf-\textbf{M}odifying \textbf{S}tate \textbf{M}odeling (SM$^2$), a novel training paradigm for SiMT task. Without building decision paths, SM$^2$ individually optimizes decisions at each state during training. To precisely optimize the policy, SM$^2$ introduces Self-Modifying process to independently assess and adjust decisions at each state. For sufficient exploration, SM$^2$ proposes Prefix Sampling to efficiently traverse all potential states. Moreover, SM$^2$ ensures compatibility with bidirectional encoders, thus achieving higher translation quality. Experiments show that SM$^2$ outperforms strong baselines. Furthermore, SM$^2$ allows offline machine translation models to acquire SiMT ability with fine-tuning.
Abstract:Large language models respond well in high-resource languages like English but struggle in low-resource languages. It may arise from the lack of high-quality instruction following data in these languages. Directly translating English samples into these languages can be a solution but unreliable, leading to responses with translation errors and lacking language-specific or cultural knowledge. To address this issue, we propose a novel method to construct cross-lingual instruction following samples with instruction in English and response in low-resource languages. Specifically, the language model first learns to generate appropriate English instructions according to the natural web texts in other languages as responses. The candidate cross-lingual instruction tuning samples are further refined and diversified. We have employed this method to build a large-scale cross-lingual instruction tuning dataset on 10 languages, namely X-Instruction. The instruction data built using our method incorporate more language-specific knowledge compared with the naive translation method. Experimental results have shown that the response quality of the model tuned on X-Instruction greatly exceeds the model distilled from a powerful teacher model, reaching or even surpassing the ones of ChatGPT. In addition, we find that models tuned on cross-lingual instruction following samples can follow the instruction in the output language without further tuning.
Abstract:Neural language models, particularly large-scale ones, have been consistently proven to be most effective in predicting brain neural activity across a range of studies. However, previous research overlooked the comparison of these models with psychologically plausible ones. Moreover, evaluations were reliant on limited, single-modality, and English cognitive datasets. To address these questions, we conducted an analysis comparing encoding performance of various neural language models and psychologically plausible models. Our study utilized extensive multi-modal cognitive datasets, examining bilingual word and discourse levels. Surprisingly, our findings revealed that psychologically plausible models outperformed neural language models across diverse contexts, encompassing different modalities such as fMRI and eye-tracking, and spanning languages from English to Chinese. Among psychologically plausible models, the one incorporating embodied information emerged as particularly exceptional. This model demonstrated superior performance at both word and discourse levels, exhibiting robust prediction of brain activation across numerous regions in both English and Chinese.
Abstract:In the evolving landscape of Neural Machine Translation (NMT), the pretrain-then-finetune paradigm has yielded impressive results. However, the persistent challenge of Catastrophic Forgetting (CF) remains a hurdle. While previous work has introduced Continual Learning (CL) methods to address CF, these approaches grapple with the delicate balance between avoiding forgetting and maintaining system extensibility. To address this, we propose a CL method, named $\textbf{F-MALLOC}$ ($\textbf{F}$eed-forward $\textbf{M}$emory $\textbf{ALLOC}ation)$. F-MALLOC is inspired by recent insights highlighting that feed-forward layers emulate neural memories and encapsulate crucial translation knowledge. It decomposes feed-forward layers into discrete memory cells and allocates these memories to different tasks. By learning to allocate and safeguard these memories, our method effectively alleviates CF while ensuring robust extendability. Besides, we propose a comprehensive assessment protocol for multi-stage CL of NMT systems. Experiments conducted following this new protocol showcase the superior performance of F-MALLOC, evidenced by higher BLEU scores and almost zero forgetting.
Abstract:Decoding continuous language from brain activity is a formidable yet promising field of research. It is particularly significant for aiding people with speech disabilities to communicate through brain signals. This field addresses the complex task of mapping brain signals to text. The previous best attempt reverse-engineered this process in an indirect way: it began by learning to encode brain activity from text and then guided text generation by aligning with predicted brain responses. In contrast, we propose a simple yet effective method that guides text reconstruction by directly comparing them with the predicted text embeddings mapped from brain activities. Comprehensive experiments reveal that our method significantly outperforms the current state-of-the-art model, showing average improvements of 77% and 54% on BLEU and METEOR scores. We further validate the proposed modules through detailed ablation studies and case analyses and highlight a critical correlation: the more precisely we map brain activities to text embeddings, the better the text reconstruction results. Such insight can simplify the task of reconstructing language from brain activities for future work, emphasizing the importance of improving brain-to-text-embedding mapping techniques.