National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, China, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
Abstract:Dialogue summarization involves a wide range of scenarios and domains. However, existing methods generally only apply to specific scenarios or domains. In this study, we propose a new pre-trained model specifically designed for multi-scenario multi-domain dialogue summarization. It adopts a multi-stage pre-training strategy to reduce the gap between the pre-training objective and fine-tuning objective. Specifically, we first conduct domain-aware pre-training using large-scale multi-scenario multi-domain dialogue data to enhance the adaptability of our pre-trained model. Then, we conduct task-oriented pre-training using large-scale multi-scenario multi-domain "dialogue-summary" parallel data annotated by ChatGPT to enhance the dialogue summarization ability of our pre-trained model. Experimental results on three dialogue summarization datasets from different scenarios and domains indicate that our pre-trained model significantly outperforms previous state-of-the-art models in full fine-tuning, zero-shot, and few-shot settings.
Abstract:Multimodal summarization usually suffers from the problem that the contribution of the visual modality is unclear. Existing multimodal summarization approaches focus on designing the fusion methods of different modalities, while ignoring the adaptive conditions under which visual modalities are useful. Therefore, we propose a novel Coarse-to-Fine contribution network for multimodal Summarization (CFSum) to consider different contributions of images for summarization. First, to eliminate the interference of useless images, we propose a pre-filter module to abandon useless images. Second, to make accurate use of useful images, we propose two levels of visual complement modules, word level and phrase level. Specifically, image contributions are calculated and are adopted to guide the attention of both textual and visual modalities. Experimental results have shown that CFSum significantly outperforms multiple strong baselines on the standard benchmark. Furthermore, the analysis verifies that useful images can even help generate non-visual words which are implicitly represented in the image.
Abstract:A common scenario of Multilingual Neural Machine Translation (MNMT) is that each translation task arrives in a sequential manner, and the training data of previous tasks is unavailable. In this scenario, the current methods suffer heavily from catastrophic forgetting (CF). To alleviate the CF, we investigate knowledge distillation based life-long learning methods. Specifically, in one-tomany scenario, we propose a multilingual distillation method to make the new model (student) jointly learn multilingual output from old model (teacher) and new task. In many-to one scenario, we find that direct distillation faces the extreme partial distillation problem, and we propose two different methods to address it: pseudo input distillation and reverse teacher distillation. The experimental results on twelve translation tasks show that the proposed methods can better consolidate the previous knowledge and sharply alleviate the CF.
Abstract:Role-oriented dialogue summarization is to generate summaries for different roles in the dialogue, e.g., merchants and consumers. Existing methods handle this task by summarizing each role's content separately and thus are prone to ignore the information from other roles. However, we believe that other roles' content could benefit the quality of summaries, such as the omitted information mentioned by other roles. Therefore, we propose a novel role interaction enhanced method for role-oriented dialogue summarization. It adopts cross attention and decoder self-attention interactions to interactively acquire other roles' critical information. The cross attention interaction aims to select other roles' critical dialogue utterances, while the decoder self-attention interaction aims to obtain key information from other roles' summaries. Experimental results have shown that our proposed method significantly outperforms strong baselines on two public role-oriented dialogue summarization datasets. Extensive analyses have demonstrated that other roles' content could help generate summaries with more complete semantics and correct topic structures.
Abstract:Dialogue summarization has drawn much attention recently. Especially in the customer service domain, agents could use dialogue summaries to help boost their works by quickly knowing customer's issues and service progress. These applications require summaries to contain the perspective of a single speaker and have a clear topic flow structure, while neither are available in existing datasets. Therefore, in this paper, we introduce a novel Chinese dataset for Customer Service Dialogue Summarization (CSDS). CSDS improves the abstractive summaries in two aspects: (1) In addition to the overall summary for the whole dialogue, role-oriented summaries are also provided to acquire different speakers' viewpoints. (2) All the summaries sum up each topic separately, thus containing the topic-level structure of the dialogue. We define tasks in CSDS as generating the overall summary and different role-oriented summaries for a given dialogue. Next, we compare various summarization methods on CSDS, and experiment results show that existing methods are prone to generate redundant and incoherent summaries. Besides, the performance becomes much worse when analyzing the performance on role-oriented summaries and topic structures. We hope that this study could benchmark Chinese dialogue summarization and benefit further studies.
Abstract:Sparsity in Deep Neural Networks (DNNs) has been widely studied to compress and accelerate the models on resource-constrained environments. It can be generally categorized into unstructured fine-grained sparsity that zeroes out multiple individual weights distributed across the neural network, and structured coarse-grained sparsity which prunes blocks of sub-networks of a neural network. Fine-grained sparsity can achieve a high compression ratio but is not hardware friendly and hence receives limited speed gains. On the other hand, coarse-grained sparsity cannot concurrently achieve both apparent acceleration on modern GPUs and decent performance. In this paper, we are the first to study training from scratch an N:M fine-grained structured sparse network, which can maintain the advantages of both unstructured fine-grained sparsity and structured coarse-grained sparsity simultaneously on specifically designed GPUs. Specifically, a 2:4 sparse network could achieve 2x speed-up without performance drop on Nvidia A100 GPUs. Furthermore, we propose a novel and effective ingredient, sparse-refined straight-through estimator (SR-STE), to alleviate the negative influence of the approximated gradients computed by vanilla STE during optimization. We also define a metric, Sparse Architecture Divergence (SAD), to measure the sparse network's topology change during the training process. Finally, We justify SR-STE's advantages with SAD and demonstrate the effectiveness of SR-STE by performing comprehensive experiments on various tasks. Source codes and models are available at https://github.com/NM-sparsity/NM-sparsity.
Abstract:End-to-end speech translation aims to translate speech in one language into text in another language via an end-to-end way. Most existing methods employ an encoder-decoder structure with a single encoder to learn acoustic representation and semantic information simultaneously, which ignores the speech-and-text modality differences and makes the encoder overloaded, leading to great difficulty in learning such a model. To address these issues, we propose a Speech-to-Text Adaptation for Speech Translation (STAST) model which aims to improve the end-to-end model performance by bridging the modality gap between speech and text. Specifically, we decouple the speech translation encoder into three parts and introduce a shrink mechanism to match the length of speech representation with that of the corresponding text transcription. To obtain better semantic representation, we completely integrate a text-based translation model into the STAST so that two tasks can be trained in the same latent space. Furthermore, we introduce a cross-modal adaptation method to close the distance between speech and text representation. Experimental results on English-French and English-German speech translation corpora have shown that our model significantly outperforms strong baselines, and achieves the new state-of-the-art performance.
Abstract:Cross-lingual summarization (CLS) is the task to produce a summary in one particular language for a source document in a different language. Existing methods simply divide this task into two steps: summarization and translation, leading to the problem of error propagation. To handle that, we present an end-to-end CLS framework, which we refer to as Neural Cross-Lingual Summarization (NCLS), for the first time. Moreover, we propose to further improve NCLS by incorporating two related tasks, monolingual summarization and machine translation, into the training process of CLS under multi-task learning. Due to the lack of supervised CLS data, we propose a round-trip translation strategy to acquire two high-quality large-scale CLS datasets based on existing monolingual summarization datasets. Experimental results have shown that our NCLS achieves remarkable improvement over traditional pipeline methods on both English-to-Chinese and Chinese-to-English CLS human-corrected test sets. In addition, NCLS with multi-task learning can further significantly improve the quality of generated summaries. We make our dataset and code publicly available here: http://www.nlpr.ia.ac.cn/cip/dataset.htm.