Abstract:Dialogue summarization involves a wide range of scenarios and domains. However, existing methods generally only apply to specific scenarios or domains. In this study, we propose a new pre-trained model specifically designed for multi-scenario multi-domain dialogue summarization. It adopts a multi-stage pre-training strategy to reduce the gap between the pre-training objective and fine-tuning objective. Specifically, we first conduct domain-aware pre-training using large-scale multi-scenario multi-domain dialogue data to enhance the adaptability of our pre-trained model. Then, we conduct task-oriented pre-training using large-scale multi-scenario multi-domain "dialogue-summary" parallel data annotated by ChatGPT to enhance the dialogue summarization ability of our pre-trained model. Experimental results on three dialogue summarization datasets from different scenarios and domains indicate that our pre-trained model significantly outperforms previous state-of-the-art models in full fine-tuning, zero-shot, and few-shot settings.
Abstract:A common scenario of Multilingual Neural Machine Translation (MNMT) is that each translation task arrives in a sequential manner, and the training data of previous tasks is unavailable. In this scenario, the current methods suffer heavily from catastrophic forgetting (CF). To alleviate the CF, we investigate knowledge distillation based life-long learning methods. Specifically, in one-tomany scenario, we propose a multilingual distillation method to make the new model (student) jointly learn multilingual output from old model (teacher) and new task. In many-to one scenario, we find that direct distillation faces the extreme partial distillation problem, and we propose two different methods to address it: pseudo input distillation and reverse teacher distillation. The experimental results on twelve translation tasks show that the proposed methods can better consolidate the previous knowledge and sharply alleviate the CF.
Abstract:Many natural language understanding (NLU) tasks, such as shallow parsing (i.e., text chunking) and semantic slot filling, require the assignment of representative labels to the meaningful chunks in a sentence. Most of the current deep neural network (DNN) based methods consider these tasks as a sequence labeling problem, in which a word, rather than a chunk, is treated as the basic unit for labeling. These chunks are then inferred by the standard IOB (Inside-Outside-Beginning) labels. In this paper, we propose an alternative approach by investigating the use of DNN for sequence chunking, and propose three neural models so that each chunk can be treated as a complete unit for labeling. Experimental results show that the proposed neural sequence chunking models can achieve start-of-the-art performance on both the text chunking and slot filling tasks.
Abstract:We present SummaRuNNer, a Recurrent Neural Network (RNN) based sequence model for extractive summarization of documents and show that it achieves performance better than or comparable to state-of-the-art. Our model has the additional advantage of being very interpretable, since it allows visualization of its predictions broken up by abstract features such as information content, salience and novelty. Another novel contribution of our work is abstractive training of our extractive model that can train on human generated reference summaries alone, eliminating the need for sentence-level extractive labels.