Abstract:In recent years, learning-based color and tone enhancement methods for photos have become increasingly popular. However, most learning-based image enhancement methods just learn a mapping from one distribution to another based on one dataset, lacking the ability to adjust images continuously and controllably. It is important to enable the learning-based enhancement models to adjust an image continuously, since in many cases we may want to get a slighter or stronger enhancement effect rather than one fixed adjusted result. In this paper, we propose a quality-guided image enhancement paradigm that enables image enhancement models to learn the distribution of images with various quality ratings. By learning this distribution, image enhancement models can associate image features with their corresponding perceptual qualities, which can be used to adjust images continuously according to different quality scores. To validate the effectiveness of our proposed method, a subjective quality assessment experiment is first conducted, focusing on skin tone adjustment in portrait photography. Guided by the subjective quality ratings obtained from this experiment, our method can adjust the skin tone corresponding to different quality requirements. Furthermore, an experiment conducted on 10 natural raw images corroborates the effectiveness of our model in situations with fewer subjects and fewer shots, and also demonstrates its general applicability to natural images. Our project page is https://github.com/IntMeGroup/quality-guided-enhancement .
Abstract:Recently, many algorithms have employed image-adaptive lookup tables (LUTs) to achieve real-time image enhancement. Nonetheless, a prevailing trend among existing methods has been the employment of linear combinations of basic LUTs to formulate image-adaptive LUTs, which limits the generalization ability of these methods. To address this limitation, we propose a novel framework named AttentionLut for real-time image enhancement, which utilizes the attention mechanism to generate image-adaptive LUTs. Our proposed framework consists of three lightweight modules. We begin by employing the global image context feature module to extract image-adaptive features. Subsequently, the attention fusion module integrates the image feature with the priori attention feature obtained during training to generate image-adaptive canonical polyadic tensors. Finally, the canonical polyadic reconstruction module is deployed to reconstruct image-adaptive residual 3DLUT, which is subsequently utilized for enhancing input images. Experiments on the benchmark MIT-Adobe FiveK dataset demonstrate that the proposed method achieves better enhancement performance quantitatively and qualitatively than the state-of-the-art methods.
Abstract:Invisible image watermarking is essential for image copyright protection. Compared to RGB images, RAW format images use a higher dynamic range to capture the radiometric characteristics of the camera sensor, providing greater flexibility in post-processing and retouching. Similar to the master recording in the music industry, RAW images are considered the original format for distribution and image production, thus requiring copyright protection. Existing watermarking methods typically target RGB images, leaving a gap for RAW images. To address this issue, we propose the first deep learning-based RAW Image Watermarking (RAWIW) framework for copyright protection. Unlike RGB image watermarking, our method achieves cross-domain copyright protection. We directly embed copyright information into RAW images, which can be later extracted from the corresponding RGB images generated by different post-processing methods. To achieve end-to-end training of the framework, we integrate a neural network that simulates the ISP pipeline to handle the RAW-to-RGB conversion process. To further validate the generalization of our framework to traditional ISP pipelines and its robustness to transmission distortion, we adopt a distortion network. This network simulates various types of noises introduced during the traditional ISP pipeline and transmission. Furthermore, we employ a three-stage training strategy to strike a balance between robustness and concealment of watermarking. Our extensive experiments demonstrate that RAWIW successfully achieves cross-domain copyright protection for RAW images while maintaining their visual quality and robustness to ISP pipeline distortions.