Abstract:Spontaneous style speech synthesis, which aims to generate human-like speech, often encounters challenges due to the scarcity of high-quality data and limitations in model capabilities. Recent language model-based TTS systems can be trained on large, diverse, and low-quality speech datasets, resulting in highly natural synthesized speech. However, they are limited by the difficulty of simulating various spontaneous behaviors and capturing prosody variations in spontaneous speech. In this paper, we propose a novel spontaneous speech synthesis system based on language models. We systematically categorize and uniformly model diverse spontaneous behaviors. Moreover, fine-grained prosody modeling is introduced to enhance the model's ability to capture subtle prosody variations in spontaneous speech.Experimental results show that our proposed method significantly outperforms the baseline methods in terms of prosody naturalness and spontaneous behavior naturalness.
Abstract:The spontaneous behavior that often occurs in conversations makes speech more human-like compared to reading-style. However, synthesizing spontaneous-style speech is challenging due to the lack of high-quality spontaneous datasets and the high cost of labeling spontaneous behavior. In this paper, we propose a semi-supervised pre-training method to increase the amount of spontaneous-style speech and spontaneous behavioral labels. In the process of semi-supervised learning, both text and speech information are considered for detecting spontaneous behaviors labels in speech. Moreover, a linguistic-aware encoder is used to model the relationship between each sentence in the conversation. Experimental results indicate that our proposed method achieves superior expressive speech synthesis performance with the ability to model spontaneous behavior in spontaneous-style speech and predict reasonable spontaneous behavior from text.
Abstract:Music-driven 3D dance generation has become an intensive research topic in recent years with great potential for real-world applications. Most existing methods lack the consideration of genre, which results in genre inconsistency in the generated dance movements. In addition, the correlation between the dance genre and the music has not been investigated. To address these issues, we propose a genre-consistent dance generation framework, GTN-Bailando. First, we propose the Genre Token Network (GTN), which infers the genre from music to enhance the genre consistency of long-term dance generation. Second, to improve the generalization capability of the model, the strategy of pre-training and fine-tuning is adopted.Experimental results on the AIST++ dataset show that the proposed dance generation framework outperforms state-of-the-art methods in terms of motion quality and genre consistency.
Abstract:This work first attempts to automatically recognize pancreatitis on CT scan images. However, different form the traditional object recognition, such pancreatitis recognition is challenging due to the fine-grained and non-rigid appearance variability of the local diseased regions. To this end, we propose a customized Region-Manipulated Fusion Networks (RMFN) to capture the key characteristics of local lesion for pancreatitis recognition. Specifically, to effectively highlight the imperceptible lesion regions, a novel region-manipulated scheme in RMFN is proposed to force the lesion regions while weaken the non-lesion regions by ceaselessly aggregating the multi-scale local information onto feature maps. The proposed scheme can be flexibly equipped into the existing neural networks, such as AlexNet and VGG. To evaluate the performance of the propose method, a real CT image database about pancreatitis is collected from hospitals \footnote{The database is available later}. And experimental results on such database well demonstrate the effectiveness of the proposed method for pancreatitis recognition.