Abstract:In this paper, the energy efficient design for probabilistic semantic communication (PSC) system with rate splitting multiple access (RSMA) is investigated. Basic principles are first reviewed to show how the PSC system works to extract, compress and transmit the semantic information in a task-oriented transmission. Subsequently, the process of how multiuser semantic information can be represented, compressed and transmitted with RSMA is presented, during which the semantic compression ratio (SCR) is introduced to directly measure the computation overhead in a transmission task, and communication overhead is indirectly described as well. Hence, the problem of wireless resource allocation jointly considering the computation and communication consumption for the PSC system with RSMA is investigated. Both conventional wireless resource constraints and unique constraints on semantic communication are considered to maximize the energy efficiency (EE). Simulation results verify the effectiveness of the proposed scheme.
Abstract:In this paper, the problem of joint transmission and computation resource allocation for probabilistic semantic communication (PSC) system with rate splitting multiple access (RSMA) is investigated. In the considered model, the base station (BS) needs to transmit a large amount of data to multiple users with RSMA. Due to limited communication resources, the BS is required to utilize semantic communication techniques to compress the large-sized data. The semantic communication is enabled by shared probability graphs between the BS and the users. The probability graph can be used to further compress the transmission data at the BS, while the received compressed semantic information can be recovered through using the same shared probability graph at each user side. The semantic information compression progress consumes additional computation power at the BS, which inevitably decreases the transmission power due to limited total power budget. Considering both the effect of semantic compression ratio and computation power, the semantic rate expression for RSMA is first obtained. Then, based on the obtained rate expression, an optimization problem is formulated with the aim of maximizing the sum of semantic rates of all users under total power, semantic compression ratio, and rate allocation constraints. To tackle this problem, an iterative algorithm is proposed, where the rate allocation and transmit beamforming design subproblem is solved using a successive convex approximation method, and the semantic compression ratio subproblem is addressed using a greedy algorithm. Numerical results validate the effectiveness of the proposed scheme.
Abstract:In this paper, the problem of joint transmission and computation resource allocation for a multi-user probabilistic semantic communication (PSC) network is investigated. In the considered model, users employ semantic information extraction techniques to compress their large-sized data before transmitting them to a multi-antenna base station (BS). Our model represents large-sized data through substantial knowledge graphs, utilizing shared probability graphs between the users and the BS for efficient semantic compression. The resource allocation problem is formulated as an optimization problem with the objective of maximizing the sum of equivalent rate of all users, considering total power budget and semantic resource limit constraints. The computation load considered in the PSC network is formulated as a non-smooth piecewise function with respect to the semantic compression ratio. To tackle this non-convex non-smooth optimization challenge, a three-stage algorithm is proposed where the solutions for the receive beamforming matrix of the BS, transmit power of each user, and semantic compression ratio of each user are obtained stage by stage. Numerical results validate the effectiveness of our proposed scheme.
Abstract:Target detection is pivotal for modern urban computing applications. While image-based techniques are widely adopted, they falter under challenging environmental conditions such as adverse weather, poor lighting, and occlusion. To improve the target detection performance under complex real-world scenarios, this paper proposes an intelligent integrated optical camera and millimeter-wave (mmWave) radar system. Utilizing both physical knowledge and data-driven methods, a long-term robust radar-camera fusion algorithm is proposed to solve the heterogeneous data fusion problem for detection improvement. For the occlusion scenarios, the proposed algorithm can effectively detect occluded targets with the help of memory through performing long-term detection. For dark scenarios with low-light conditions, the proposed algorithm can effectively mark the target in the dark picture as well as provide rough stickman imaging. The above two innovative functions of the hybrid optical camera and mmWave radar system are tested in real-world scenarios. The results demonstrate the robustness and significant enhancement in the target detection performance of our integrated system.
Abstract:In this paper, the problem of semantic information extraction for resource constrained text data transmission is studied. In the considered model, a sequence of text data need to be transmitted within a communication resource-constrained network, which only allows limited data transmission. Thus, at the transmitter, the original text data is extracted with natural language processing techniques. Then, the extracted semantic information is captured in a knowledge graph. An additional probability dimension is introduced in this graph to capture the importance of each information. This semantic information extraction problem is posed as an optimization framework whose goal is to extract most important semantic information for transmission. To find an optimal solution for this problem, a Floyd's algorithm based solution coupled with an efficient sorting mechanism is proposed. Numerical results testify the effectiveness of the proposed algorithm with regards to two novel performance metrics including semantic uncertainty and semantic similarity.