Abstract:In mixed reality applications, a realistic acoustic experience in spatial environments is as crucial as the visual experience for achieving true immersion. Despite recent advances in neural approaches for Room Impulse Response (RIR) estimation, most existing methods are limited to the single environment on which they are trained, lacking the ability to generalize to new rooms with different geometries and surface materials. We aim to develop a unified model capable of reconstructing the spatial acoustic experience of any environment with minimum additional measurements. To this end, we present xRIR, a framework for cross-room RIR prediction. The core of our generalizable approach lies in combining a geometric feature extractor, which captures spatial context from panorama depth images, with a RIR encoder that extracts detailed acoustic features from only a few reference RIR samples. To evaluate our method, we introduce ACOUSTICROOMS, a new dataset featuring high-fidelity simulation of over 300,000 RIRs from 260 rooms. Experiments show that our method strongly outperforms a series of baselines. Furthermore, we successfully perform sim-to-real transfer by evaluating our model on four real-world environments, demonstrating the generalizability of our approach and the realism of our dataset.
Abstract:This paper addresses the problem of quickest change detection (QCD) at two spatially separated locations monitored by a single unmanned aerial vehicle (UAV) equipped with a sensor. At any location, the UAV observes i.i.d. data sequentially in discrete time instants. The distribution of the observation data changes at some unknown, arbitrary time and the UAV has to detect this change in the shortest possible time. Change can occur at most at one location over the entire infinite time horizon. The UAV switches between these two locations in order to quickly detect the change. To this end, we propose Location Switching and Change Detection (LS-CD) algorithm which uses a repeated one-sided sequential probability ratio test (SPRT) based mechanism for observation-driven location switching and change detection. The primary goal is to minimize the worst-case average detection delay (WADD) while meeting constraints on the average run length to false alarm (ARL2FA) and the UAV's time-averaged energy consumption. We provide a rigorous theoretical analysis of the algorithm's performance by using theory of random walk. Specifically, we derive tight upper and lower bounds to its ARL2FA and a tight upper bound to its WADD. In the special case of a symmetrical setting, our analysis leads to a new asymptotic upper bound to the ARL2FA of the standard CUSUM algorithm, a novel contribution not available in the literature, to our knowledge. Numerical simulations demonstrate the efficacy of LS-CD.
Abstract:Building reliable speech systems often requires combining multiple modalities, like audio and visual cues. While such multimodal solutions frequently lead to improvements in performance and may even be critical in certain cases, they come with several constraints such as increased sensory requirements, computational cost, and modality synchronization, to mention a few. These challenges constrain the direct uses of these multimodal solutions in real-world applications. In this work, we develop approaches where the learning happens with all available modalities but the deployment or inference is done with just one or reduced modalities. To do so, we propose a Multimodal Training and Unimodal Deployment (MUTUD) framework which includes a Temporally Aligned Modality feature Estimation (TAME) module that can estimate information from missing modality using modalities present during inference. This innovative approach facilitates the integration of information across different modalities, enhancing the overall inference process by leveraging the strengths of each modality to compensate for the absence of certain modalities during inference. We apply MUTUD to various audiovisual speech tasks and show that it can reduce the performance gap between the multimodal and corresponding unimodal models to a considerable extent. MUTUD can achieve this while reducing the model size and compute compared to multimodal models, in some cases by almost 80%.
Abstract:Speaker Diarization (SD) is a crucial component of modern end-to-end ASR pipelines. Traditional SD systems, which are typically audio-based and operate independently of ASR, often introduce speaker errors, particularly during speaker transitions and overlapping speech. Recently, language models including fine-tuned large language models (LLMs) have shown to be effective as a second-pass speaker error corrector by leveraging lexical context in the transcribed output. In this work, we introduce a novel acoustic conditioning approach to provide more fine-grained information from the acoustic diarizer to the LLM. We also show that a simpler constrained decoding strategy reduces LLM hallucinations, while avoiding complicated post-processing. Our approach significantly reduces the speaker error rates by 24-43% across Fisher, Callhome, and RT03-CTS datasets, compared to the first-pass Acoustic SD.
Abstract:We focus on enhancing comprehension in small-group recorded conversations, which serve as a medium to bring people together and provide a space for sharing personal stories and experiences on crucial social matters. One way to parse and convey information from these conversations is by sharing highlighted excerpts in subsequent conversations. This can help promote a collective understanding of relevant issues, by highlighting perspectives and experiences to other groups of people who might otherwise be unfamiliar with and thus unable to relate to these experiences. The primary challenge that arises then is that excerpts taken from one conversation and shared in another setting might be missing crucial context or key elements that were previously introduced in the original conversation. This problem is exacerbated when conversations become lengthier and richer in themes and shared experiences. To address this, we explore how Large Language Models (LLMs) can enrich these excerpts by providing socially relevant context. We present approaches for effective contextualization to improve comprehension, readability, and empathy. We show significant improvements in understanding, as assessed through subjective and objective evaluations. While LLMs can offer valuable context, they struggle with capturing key social aspects. We release the Human-annotated Salient Excerpts (HSE) dataset to support future work. Additionally, we show how context-enriched excerpts can provide more focused and comprehensive conversation summaries.
Abstract:Text-guided diffusion models have revolutionized generative tasks by producing high-fidelity content from text descriptions. They have also enabled an editing paradigm where concepts can be replaced through text conditioning (e.g., a dog to a tiger). In this work, we explore a novel approach: instead of replacing a concept, can we enhance or suppress the concept itself? Through an empirical study, we identify a trend where concepts can be decomposed in text-guided diffusion models. Leveraging this insight, we introduce ScalingConcept, a simple yet effective method to scale decomposed concepts up or down in real input without introducing new elements. To systematically evaluate our approach, we present the WeakConcept-10 dataset, where concepts are imperfect and need to be enhanced. More importantly, ScalingConcept enables a variety of novel zero-shot applications across image and audio domains, including tasks such as canonical pose generation and generative sound highlighting or removal.
Abstract:Objective speech quality measures are typically used to assess speech enhancement algorithms, but it has been shown that they are sub-optimal as learning objectives because they do not always align well with human subjective ratings. This misalignment often results in noticeable distortions and artifacts that cause speech enhancement to be ineffective. To address these issues, we propose a reinforcement learning from human feedback (RLHF) framework to fine-tune an existing speech enhancement approach by optimizing performance using a mean-opinion score (MOS)-based reward model. Our results show that the RLHF-finetuned model has the best performance across different benchmarks for both objective and MOS-based speech quality assessment metrics on the Voicebank+DEMAND dataset. Through ablation studies, we show that both policy gradient loss and supervised MSE loss are important for balanced optimization across the different metrics.
Abstract:In this paper, we introduce a novel task called language-guided joint audio-visual editing. Given an audio and image pair of a sounding event, this task aims at generating new audio-visual content by editing the given sounding event conditioned on the language guidance. For instance, we can alter the background environment of a sounding object while keeping its appearance unchanged, or we can add new sounds contextualized to the visual content. To address this task, we propose a new diffusion-based framework for joint audio-visual editing and introduce two key ideas. Firstly, we propose a one-shot adaptation approach to tailor generative diffusion models for audio-visual content editing. With as few as one audio-visual sample, we jointly transfer the audio and vision diffusion models to the target domain. After fine-tuning, our model enables consistent generation of this audio-visual sample. Secondly, we introduce a cross-modal semantic enhancement approach. We observe that when using language as content editing guidance, the vision branch may overlook editing requirements. This phenomenon, termed catastrophic neglect, hampers audio-visual alignment during content editing. We therefore enhance semantic consistency between language and vision to mitigate this issue. Extensive experiments validate the effectiveness of our method in language-based audio-visual editing and highlight its superiority over several baseline approaches. We recommend that readers visit our project page for more details: https://liangsusan-git.github.io/project/avedit/.
Abstract:Direction-of-arrival estimation of multiple speakers in a room is an important task for a wide range of applications. In particular, challenging environments with moving speakers, reverberation and noise, lead to significant performance degradation for current methods. With the aim of better understanding factors affecting performance and improving current methods, in this paper multi-speaker direction-of-arrival (DOA) estimation is investigated using a modified version of the local space domain distance (LSDD) algorithm in a noisy, dynamic and reverberant environment employing a wearable microphone array. This study utilizes the recently published EasyCom speech dataset, recorded using a wearable microphone array mounted on eyeglasses. While the original LSDD algorithm demonstrates strong performance in static environments, its efficacy significantly diminishes in the dynamic settings of the EasyCom dataset. Several enhancements to the LSDD algorithm are developed following a comprehensive performance and system analysis, which enable improved DOA estimation under these challenging conditions. These improvements include incorporating a weighted reliability approach and introducing a new quality measure that reliably identifies the more accurate DOA estimates, thereby enhancing both the robustness and accuracy of the algorithm in challenging environments.
Abstract:Egocentric videos provide comprehensive contexts for user and scene understanding, spanning multisensory perception to behavioral interaction. We propose Spherical World-Locking (SWL) as a general framework for egocentric scene representation, which implicitly transforms multisensory streams with respect to measurements of head orientation. Compared to conventional head-locked egocentric representations with a 2D planar field-of-view, SWL effectively offsets challenges posed by self-motion, allowing for improved spatial synchronization between input modalities. Using a set of multisensory embeddings on a worldlocked sphere, we design a unified encoder-decoder transformer architecture that preserves the spherical structure of the scene representation, without requiring expensive projections between image and world coordinate systems. We evaluate the effectiveness of the proposed framework on multiple benchmark tasks for egocentric video understanding, including audio-visual active speaker localization, auditory spherical source localization, and behavior anticipation in everyday activities.