Abstract:We propose UNIVERSE++, a universal speech enhancement method based on score-based diffusion and adversarial training. Specifically, we improve the existing UNIVERSE model that decouples clean speech feature extraction and diffusion. Our contributions are three-fold. First, we make several modifications to the network architecture, improving training stability and final performance. Second, we introduce an adversarial loss to promote learning high quality speech features. Third, we propose a low-rank adaptation scheme with a phoneme fidelity loss to improve content preservation in the enhanced speech. In the experiments, we train a universal enhancement model on a large scale dataset of speech degraded by noise, reverberation, and various distortions. The results on multiple public benchmark datasets demonstrate that UNIVERSE++ compares favorably to both discriminative and generative baselines for a wide range of qualitative and intelligibility metrics.
Abstract:The last decade has witnessed significant advancements in deep learning-based speech enhancement (SE). However, most existing SE research has limitations on the coverage of SE sub-tasks, data diversity and amount, and evaluation metrics. To fill this gap and promote research toward universal SE, we establish a new SE challenge, named URGENT, to focus on the universality, robustness, and generalizability of SE. We aim to extend the SE definition to cover different sub-tasks to explore the limits of SE models, starting from denoising, dereverberation, bandwidth extension, and declipping. A novel framework is proposed to unify all these sub-tasks in a single model, allowing the use of all existing SE approaches. We collected public speech and noise data from different domains to construct diverse evaluation data. Finally, we discuss the insights gained from our preliminary baseline experiments based on both generative and discriminative SE methods with 12 curated metrics.
Abstract:TorchAudio is an open-source audio and speech processing library built for PyTorch. It aims to accelerate the research and development of audio and speech technologies by providing well-designed, easy-to-use, and performant PyTorch components. Its contributors routinely engage with users to understand their needs and fulfill them by developing impactful features. Here, we survey TorchAudio's development principles and contents and highlight key features we include in its latest version (2.1): self-supervised learning pre-trained pipelines and training recipes, high-performance CTC decoders, speech recognition models and training recipes, advanced media I/O capabilities, and tools for performing forced alignment, multi-channel speech enhancement, and reference-less speech assessment. For a selection of these features, through empirical studies, we demonstrate their efficacy and show that they achieve competitive or state-of-the-art performance.
Abstract:End-to-end neural diarization (EEND) with encoder-decoder-based attractors (EDA) is a promising method to handle the whole speaker diarization problem simultaneously with a single neural network. While the EEND model can produce all frame-level speaker labels simultaneously, it disregards output label dependency. In this work, we propose a novel EEND model that introduces the label dependency between frames. The proposed method generates non-autoregressive intermediate attractors to produce speaker labels at the lower layers and conditions the subsequent layers with these labels. While the proposed model works in a non-autoregressive manner, the speaker labels are refined by referring to the whole sequence of intermediate labels. The experiments with the two-speaker CALLHOME dataset show that the intermediate labels with the proposed non-autoregressive intermediate attractors boost the diarization performance. The proposed method with the deeper network benefits more from the intermediate labels, resulting in better performance and training throughput than EEND-EDA.
Abstract:We propose DiffSep, a new single channel source separation method based on score-matching of a stochastic differential equation (SDE). We craft a tailored continuous time diffusion-mixing process starting from the separated sources and converging to a Gaussian distribution centered on their mixture. This formulation lets us apply the machinery of score-based generative modelling. First, we train a neural network to approximate the score function of the marginal probabilities or the diffusion-mixing process. Then, we use it to solve the reverse time SDE that progressively separates the sources starting from their mixture. We propose a modified training strategy to handle model mismatch and source permutation ambiguity. Experiments on the WSJ0 2mix dataset demonstrate the potential of the method. Furthermore, the method is also suitable for speech enhancement and shows performance competitive with prior work on the VoiceBank-DEMAND dataset.
Abstract:This paper presents recent progress on integrating speech separation and enhancement (SSE) into the ESPnet toolkit. Compared with the previous ESPnet-SE work, numerous features have been added, including recent state-of-the-art speech enhancement models with their respective training and evaluation recipes. Importantly, a new interface has been designed to flexibly combine speech enhancement front-ends with other tasks, including automatic speech recognition (ASR), speech translation (ST), and spoken language understanding (SLU). To showcase such integration, we performed experiments on carefully designed synthetic datasets for noisy-reverberant multi-channel ST and SLU tasks, which can be used as benchmark corpora for future research. In addition to these new tasks, we also use CHiME-4 and WSJ0-2Mix to benchmark multi- and single-channel SE approaches. Results show that the integration of SE front-ends with back-end tasks is a promising research direction even for tasks besides ASR, especially in the multi-channel scenario. The code is available online at https://github.com/ESPnet/ESPnet. The multi-channel ST and SLU datasets, which are another contribution of this work, are released on HuggingFace.
Abstract:We develop an end-to-end system for multi-channel, multi-speaker automatic speech recognition. We propose a frontend for joint source separation and dereverberation based on the independent vector analysis (IVA) paradigm. It uses the fast and stable iterative source steering algorithm together with a neural source model. The parameters from the ASR module and the neural source model are optimized jointly from the ASR loss itself. We demonstrate competitive performance with previous systems using neural beamforming frontends. First, we explore the trade-offs when using various number of channels for training and testing. Second, we demonstrate that the proposed IVA frontend performs well on noisy data, even when trained on clean mixtures only. Furthermore, it extends without retraining to the separation of more speakers, which is demonstrated on mixtures of three and four speakers.
Abstract:We propose a spatial loss for unsupervised multi-channel source separation. The proposed loss exploits the duality of direction of arrival (DOA) and beamforming: the steering and beamforming vectors should be aligned for the target source, but orthogonal for interfering ones. The spatial loss encourages consistency between the mixing and demixing systems from a classic DOA estimator and a neural separator, respectively. With the proposed loss, we train the neural separators based on minimum variance distortionless response (MVDR) beamforming and independent vector analysis (IVA). We also investigate the effectiveness of combining our spatial loss and a signal loss, which uses the outputs of blind source separation as the reference. We evaluate our proposed method on synthetic and recorded (LibriCSS) mixtures. We find that the spatial loss is most effective to train IVA-based separators. For the neural MVDR beamformer, it performs best when combined with a signal loss. On synthetic mixtures, the proposed unsupervised loss leads to the same performance as a supervised loss in terms of word error rate. On LibriCSS, we obtain close to state-of-the-art performance without any labeled training data.
Abstract:We propose multi-layer perceptron (MLP)-based architectures suitable for variable length input. MLP-based architectures, recently proposed for image classification, can only be used for inputs of a fixed, pre-defined size. However, many types of data are naturally variable in length, for example, acoustic signals. We propose three approaches to extend MLP-based architectures for use with sequences of arbitrary length. The first one uses a circular convolution applied in the Fourier domain, the second applies a depthwise convolution, and the final relies on a shift operation. We evaluate the proposed architectures on an automatic speech recognition task with the Librispeech and Tedlium2 corpora. The best proposed MLP-based architectures improves WER by 1.0 / 0.9%, 0.9 / 0.5% on Librispeech dev-clean/dev-other, test-clean/test-other set, and 0.8 / 1.1% on Tedlium2 dev/test set using 86.4% the size of self-attention-based architecture.
Abstract:We propose an end-to-end framework for training iterative multi-channel joint dereverberation and source separation with a neural source model. We combine the unified dereverberation and separation update equations of ILRMA-T with a deep neural network (DNN) serving as source model. The weights of the model are directly trained by gradient descent with a permutation invariant loss on the output time-domain signals. One drawback of this approach is that backpropagation consumes memory linearly in the number of iterations. This severely limits the number of iterations, channels, or signal lengths that can be used during training. We introduce demixing matrix checkpointing to bypass this problem, a new technique that reduces the total memory cost to that of a single iteration. In experiments, we demonstrate that the introduced framework results in high-performance in terms of conventional speech quality metrics and word error rate. Furthermore, it generalizes to number of channels unseen during training.