Abstract:We propose a data cleansing method that utilizes a neural analysis and synthesis (NANSY++) framework to train an end-to-end neural diarization model (EEND) for singer diarization. Our proposed model converts song data with choral singing which is commonly contained in popular music and unsuitable for generating a simulated dataset to the solo singing data. This cleansing is based on NANSY++, which is a framework trained to reconstruct an input non-overlapped audio signal. We exploit the pre-trained NANSY++ to convert choral singing into clean, non-overlapped audio. This cleansing process mitigates the mislabeling of choral singing to solo singing and helps the effective training of EEND models even when the majority of available song data contains choral singing sections. We experimentally evaluated the EEND model trained with a dataset using our proposed method using annotated popular duet songs. As a result, our proposed method improved 14.8 points in diarization error rate.
Abstract:This paper proposes an audio fingerprinting model with holographic reduced representation (HRR). The proposed method reduces the number of stored fingerprints, whereas conventional neural audio fingerprinting requires many fingerprints for each audio track to achieve high accuracy and time resolution. We utilize HRR to aggregate multiple fingerprints into a composite fingerprint via circular convolution and summation, resulting in fewer fingerprints with the same dimensional space as the original. Our search method efficiently finds a combined fingerprint in which a query fingerprint exists. Using HRR's inverse operation, it can recover the relative position within a combined fingerprint, retaining the original time resolution. Experiments show that our method can reduce the number of fingerprints with modest accuracy degradation while maintaining the time resolution, outperforming simple decimation and summation-based aggregation methods.
Abstract:We propose UNIVERSE++, a universal speech enhancement method based on score-based diffusion and adversarial training. Specifically, we improve the existing UNIVERSE model that decouples clean speech feature extraction and diffusion. Our contributions are three-fold. First, we make several modifications to the network architecture, improving training stability and final performance. Second, we introduce an adversarial loss to promote learning high quality speech features. Third, we propose a low-rank adaptation scheme with a phoneme fidelity loss to improve content preservation in the enhanced speech. In the experiments, we train a universal enhancement model on a large scale dataset of speech degraded by noise, reverberation, and various distortions. The results on multiple public benchmark datasets demonstrate that UNIVERSE++ compares favorably to both discriminative and generative baselines for a wide range of qualitative and intelligibility metrics.
Abstract:This paper summarizes our acoustic modeling efforts in the Johns Hopkins University speech recognition system for the CHiME-5 challenge to recognize highly-overlapped dinner party speech recorded by multiple microphone arrays. We explore data augmentation approaches, neural network architectures, front-end speech dereverberation, beamforming and robust i-vector extraction with comparisons of our in-house implementations and publicly available tools. We finally achieved a word error rate of 69.4% on the development set, which is a 11.7% absolute improvement over the previous baseline of 81.1%, and release this improved baseline with refined techniques/tools as an advanced CHiME-5 recipe.
Abstract:This study presents a novel approach for knowledge distillation (KD) from a BERT teacher model to an automatic speech recognition (ASR) model using intermediate layers. To distil the teacher's knowledge, we use an attention decoder that learns from BERT's token probabilities. Our method shows that language model (LM) information can be more effectively distilled into an ASR model using both the intermediate layers and the final layer. By using the intermediate layers as distillation target, we can more effectively distil LM knowledge into the lower network layers. Using our method, we achieve better recognition accuracy than with shallow fusion of an external LM, allowing us to maintain fast parallel decoding. Experiments on the LibriSpeech dataset demonstrate the effectiveness of our approach in enhancing greedy decoding with connectionist temporal classification (CTC).
Abstract:This study introduces a novel training paradigm, audio difference learning, for improving audio captioning. The fundamental concept of the proposed learning method is to create a feature representation space that preserves the relationship between audio, enabling the generation of captions that detail intricate audio information. This method employs a reference audio along with the input audio, both of which are transformed into feature representations via a shared encoder. Captions are then generated from these differential features to describe their differences. Furthermore, a unique technique is proposed that involves mixing the input audio with additional audio, and using the additional audio as a reference. This results in the difference between the mixed audio and the reference audio reverting back to the original input audio. This allows the original input's caption to be used as the caption for their difference, eliminating the need for additional annotations for the differences. In the experiments using the Clotho and ESC50 datasets, the proposed method demonstrated an improvement in the SPIDEr score by 7% compared to conventional methods.
Abstract:End-to-end neural diarization (EEND) with encoder-decoder-based attractors (EDA) is a promising method to handle the whole speaker diarization problem simultaneously with a single neural network. While the EEND model can produce all frame-level speaker labels simultaneously, it disregards output label dependency. In this work, we propose a novel EEND model that introduces the label dependency between frames. The proposed method generates non-autoregressive intermediate attractors to produce speaker labels at the lower layers and conditions the subsequent layers with these labels. While the proposed model works in a non-autoregressive manner, the speaker labels are refined by referring to the whole sequence of intermediate labels. The experiments with the two-speaker CALLHOME dataset show that the intermediate labels with the proposed non-autoregressive intermediate attractors boost the diarization performance. The proposed method with the deeper network benefits more from the intermediate labels, resulting in better performance and training throughput than EEND-EDA.
Abstract:This paper proposes a method for improved CTC inference with searched intermediates and multi-pass conditioning. The paper first formulates self-conditioned CTC as a probabilistic model with an intermediate prediction as a latent representation and provides a tractable conditioning framework. We then propose two new conditioning methods based on the new formulation: (1) Searched intermediate conditioning that refines intermediate predictions with beam-search, (2) Multi-pass conditioning that uses predictions of previous inference for conditioning the next inference. These new approaches enable better conditioning than the original self-conditioned CTC during inference and improve the final performance. Experiments with the LibriSpeech dataset show relative 3%/12% performance improvement at the maximum in test clean/other sets compared to the original self-conditioned CTC.
Abstract:End-to-end automatic speech recognition (ASR) directly maps input speech to a character sequence without using pronunciation lexica. However, in languages with thousands of characters, such as Japanese and Mandarin, modeling all these characters is problematic due to data scarcity. To alleviate the problem, we propose a multi-task learning model with explicit interaction between characters and syllables by utilizing Self-conditioned connectionist temporal classification (CTC) technique. While the original Self-conditioned CTC estimates character-level intermediate predictions by applying auxiliary CTC losses to a set of intermediate layers, the proposed method additionally estimates syllable-level intermediate predictions in another set of intermediate layers. The character-level and syllable-level predictions are alternately used as conditioning features to deal with mutual dependency between characters and syllables. Experimental results on Japanese and Mandarin datasets show that the proposed multi-sequence intermediate conditioning outperformed the conventional multi-task-based and Self-conditioned CTC-based methods.
Abstract:This paper proposes InterAug: a novel training method for CTC-based ASR using augmented intermediate representations for conditioning. The proposed method exploits the conditioning framework of self-conditioned CTC to train robust models by conditioning with "noisy" intermediate predictions. During the training, intermediate predictions are changed to incorrect intermediate predictions, and fed into the next layer for conditioning. The subsequent layers are trained to correct the incorrect intermediate predictions with the intermediate losses. By repeating the augmentation and the correction, iterative refinements, which generally require a special decoder, can be realized only with the audio encoder. To produce noisy intermediate predictions, we also introduce new augmentation: intermediate feature space augmentation and intermediate token space augmentation that are designed to simulate typical errors. The combination of the proposed InterAug framework with new augmentation allows explicit training of the robust audio encoders. In experiments using augmentations simulating deletion, insertion, and substitution error, we confirmed that the trained model acquires robustness to each error, boosting the speech recognition performance of the strong self-conditioned CTC baseline.