Abstract:We introduce LibriTTS-P, a new corpus based on LibriTTS-R that includes utterance-level descriptions (i.e., prompts) of speaking style and speaker-level prompts of speaker characteristics. We employ a hybrid approach to construct prompt annotations: (1) manual annotations that capture human perceptions of speaker characteristics and (2) synthetic annotations on speaking style. Compared to existing English prompt datasets, our corpus provides more diverse prompt annotations for all speakers of LibriTTS-R. Experimental results for prompt-based controllable TTS demonstrate that the TTS model trained with LibriTTS-P achieves higher naturalness than the model using the conventional dataset. Furthermore, the results for style captioning tasks show that the model utilizing LibriTTS-P generates 2.5 times more accurate words than the model using a conventional dataset. Our corpus, LibriTTS-P, is available at https://github.com/line/LibriTTS-P.
Abstract:Independent deeply learned matrix analysis (IDLMA) is one of the state-of-the-art multichannel audio source separation methods using the source power estimation based on deep neural networks (DNNs). The DNN-based power estimation works well for sounds having timbres similar to the DNN training data. However, the sounds to which IDLMA is applied do not always have such timbres, and the timbral mismatch causes the performance degradation of IDLMA. To tackle this problem, we focus on a blind source separation counterpart of IDLMA, independent low-rank matrix analysis. It uses nonnegative matrix factorization (NMF) as the source model, which can capture source spectral components that only appear in the target mixture, using the low-rank structure of the source spectrogram as a clue. We thus extend the DNN-based source model to encompass the NMF-based source model on the basis of the product-of-expert concept, which we call the product of source models (PoSM). For the proposed PoSM-based IDLMA, we derive a computationally efficient parameter estimation algorithm based on an optimization principle called the majorization-minimization algorithm. Experimental evaluations show the effectiveness of the proposed method.
Abstract:Independent deeply learned matrix analysis (IDLMA) is one of the state-of-the-art supervised multichannel audio source separation methods. It blindly estimates the demixing filters on the basis of source independence, using the source model estimated by the deep neural network (DNN). However, since the ratios of the source to interferer signals vary widely among time-frequency (TF) slots, it is difficult to obtain reliable estimated power spectrograms of sources at all TF slots. In this paper, we propose an IDLMA extension, empirical Bayesian IDLMA (EB-IDLMA), by introducing a prior distribution of source power spectrograms and treating the source power spectrograms as latent random variables. This treatment allows us to implicitly consider the reliability of the estimated source power spectrograms for the estimation of demixing filters through the hyperparameters of the prior distribution estimated by the DNN. Experimental evaluations show the effectiveness of EB-IDLMA and the importance of introducing the reliability of the estimated source power spectrograms.