Abstract:This paper introduces a novel task in generative speech processing, Acoustic Scene Transfer (AST), which aims to transfer acoustic scenes of speech signals to diverse environments. AST promises an immersive experience in speech perception by adapting the acoustic scene behind speech signals to desired environments. We propose AST-LDM for the AST task, which generates speech signals accompanied by the target acoustic scene of the reference prompt. Specifically, AST-LDM is a latent diffusion model conditioned by CLAP embeddings that describe target acoustic scenes in either audio or text modalities. The contributions of this paper include introducing the AST task and implementing its baseline model. For AST-LDM, we emphasize its core framework, which is to preserve the input speech and generate audio consistently with both the given speech and the target acoustic environment. Experiments, including objective and subjective tests, validate the feasibility and efficacy of our approach.
Abstract:We propose DiffSep, a new single channel source separation method based on score-matching of a stochastic differential equation (SDE). We craft a tailored continuous time diffusion-mixing process starting from the separated sources and converging to a Gaussian distribution centered on their mixture. This formulation lets us apply the machinery of score-based generative modelling. First, we train a neural network to approximate the score function of the marginal probabilities or the diffusion-mixing process. Then, we use it to solve the reverse time SDE that progressively separates the sources starting from their mixture. We propose a modified training strategy to handle model mismatch and source permutation ambiguity. Experiments on the WSJ0 2mix dataset demonstrate the potential of the method. Furthermore, the method is also suitable for speech enhancement and shows performance competitive with prior work on the VoiceBank-DEMAND dataset.