Abstract:Artificial neural networks (ANNs) have fundamentally transformed the field of computer vision, providing unprecedented performance. However, these ANNs for image processing demand substantial computational resources, often hindering real-time operation. In this paper, we demonstrate an optical encoder that can perform convolution simultaneously in three color channels during the image capture, effectively implementing several initial convolutional layers of a ANN. Such an optical encoding results in ~24,000 times reduction in computational operations, with a state-of-the art classification accuracy (~73.2%) in free-space optical system. In addition, our analog optical encoder, trained for CIFAR-10 data, can be transferred to the ImageNet subset, High-10, without any modifications, and still exhibits moderate accuracy. Our results evidence the potential of hybrid optical/digital computer vision system in which the optical frontend can pre-process an ambient scene to reduce the energy and latency of the whole computer vision system.
Abstract:We present the results of the "Fast Calorimeter Simulation Challenge 2022" - the CaloChallenge. We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality, ranging from a few hundred voxels to a few tens of thousand voxels. The 31 individual submissions span a wide range of current popular generative architectures, including Variational AutoEncoders (VAEs), Generative Adversarial Networks (GANs), Normalizing Flows, Diffusion models, and models based on Conditional Flow Matching. We compare all submissions in terms of quality of generated calorimeter showers, as well as shower generation time and model size. To assess the quality we use a broad range of different metrics including differences in 1-dimensional histograms of observables, KPD/FPD scores, AUCs of binary classifiers, and the log-posterior of a multiclass classifier. The results of the CaloChallenge provide the most complete and comprehensive survey of cutting-edge approaches to calorimeter fast simulation to date. In addition, our work provides a uniquely detailed perspective on the important problem of how to evaluate generative models. As such, the results presented here should be applicable for other domains that use generative AI and require fast and faithful generation of samples in a large phase space.
Abstract:Video encompasses both visual and auditory data, creating a perceptually rich experience where these two modalities complement each other. As such, videos are a valuable type of media for the investigation of the interplay between audio and visual elements. Previous studies of audio-visual modalities primarily focused on either audio-visual representation learning or generative modeling of a modality conditioned on the other, creating a disconnect between these two branches. A unified framework that learns representation and generates modalities has not been developed yet. In this work, we introduce a novel framework called Vision to Audio and Beyond (VAB) to bridge the gap between audio-visual representation learning and vision-to-audio generation. The key approach of VAB is that rather than working with raw video frames and audio data, VAB performs representation learning and generative modeling within latent spaces. In particular, VAB uses a pre-trained audio tokenizer and an image encoder to obtain audio tokens and visual features, respectively. It then performs the pre-training task of visual-conditioned masked audio token prediction. This training strategy enables the model to engage in contextual learning and simultaneous video-to-audio generation. After the pre-training phase, VAB employs the iterative-decoding approach to rapidly generate audio tokens conditioned on visual features. Since VAB is a unified model, its backbone can be fine-tuned for various audio-visual downstream tasks. Our experiments showcase the efficiency of VAB in producing high-quality audio from video, and its capability to acquire semantic audio-visual features, leading to competitive results in audio-visual retrieval and classification.
Abstract:We introduce a novel machine learning method developed for the fast simulation of calorimeter detector response, adapting vector-quantized variational autoencoder (VQ-VAE). Our model adopts a two-stage generation strategy: initially compressing geometry-aware calorimeter data into a discrete latent space, followed by the application of a sequence model to learn and generate the latent tokens. Extensive experimentation on the Calo-challenge dataset underscores the efficiency of our approach, showcasing a remarkable improvement in the generation speed compared with conventional method by a factor of 2000. Remarkably, our model achieves the generation of calorimeter showers within milliseconds. Furthermore, comprehensive quantitative evaluations across various metrics are performed to validate physics performance of generation.
Abstract:Training networks consisting of biophysically accurate neuron models could allow for new insights into how brain circuits can organize and solve tasks. We begin by analyzing the extent to which the central algorithm for neural network learning -- stochastic gradient descent through backpropagation (BP) -- can be used to train such networks. We find that properties of biophysically based neural network models needed for accurate modelling such as stiffness, high nonlinearity and long evaluation timeframes relative to spike times makes BP unstable and divergent in a variety of cases. To address these instabilities and inspired by recent work, we investigate the use of "gradient-estimating" evolutionary algorithms (EAs) for training biophysically based neural networks. We find that EAs have several advantages making them desirable over direct BP, including being forward-pass only, robust to noisy and rigid losses, allowing for discrete loss formulations, and potentially facilitating a more global exploration of parameters. We apply our method to train a recurrent network of Morris-Lecar neuron models on a stimulus integration and working memory task, and show how it can succeed in cases where direct BP is inapplicable. To expand on the viability of EAs in general, we apply them to a general neural ODE problem and a stiff neural ODE benchmark and find again that EAs can out-perform direct BP here, especially for the over-parameterized regime. Our findings suggest that biophysical neurons could provide useful benchmarks for testing the limits of BP-adjacent methods, and demonstrate the viability of EAs for training networks with complex components.
Abstract:Neurons can display highly variable dynamics. While such variability presumably supports the wide range of behaviors generated by the organism, their gene expressions are relatively stable in the adult brain. This suggests that neuronal activity is a combination of its time-invariant identity and the inputs the neuron receives from the rest of the circuit. Here, we propose a self-supervised learning based method to assign time-invariant representations to individual neurons based on permutation-, and population size-invariant summary of population recordings. We fit dynamical models to neuronal activity to learn a representation by considering the activity of both the individual and the neighboring population. Our self-supervised approach and use of implicit representations enable robust inference against imperfections such as partial overlap of neurons across sessions, trial-to-trial variability, and limited availability of molecular (transcriptomic) labels for downstream supervised tasks. We demonstrate our method on a public multimodal dataset of mouse cortical neuronal activity and transcriptomic labels. We report > 35% improvement in predicting the transcriptomic subclass identity and > 20% improvement in predicting class identity with respect to the state-of-the-art.
Abstract:Modeling sounds emitted from physical object interactions is critical for immersive perceptual experiences in real and virtual worlds. Traditional methods of impact sound synthesis use physics simulation to obtain a set of physics parameters that could represent and synthesize the sound. However, they require fine details of both the object geometries and impact locations, which are rarely available in the real world and can not be applied to synthesize impact sounds from common videos. On the other hand, existing video-driven deep learning-based approaches could only capture the weak correspondence between visual content and impact sounds since they lack of physics knowledge. In this work, we propose a physics-driven diffusion model that can synthesize high-fidelity impact sound for a silent video clip. In addition to the video content, we propose to use additional physics priors to guide the impact sound synthesis procedure. The physics priors include both physics parameters that are directly estimated from noisy real-world impact sound examples without sophisticated setup and learned residual parameters that interpret the sound environment via neural networks. We further implement a novel diffusion model with specific training and inference strategies to combine physics priors and visual information for impact sound synthesis. Experimental results show that our model outperforms several existing systems in generating realistic impact sounds. More importantly, the physics-based representations are fully interpretable and transparent, thus enabling us to perform sound editing flexibly.
Abstract:When learning new tasks in a sequential manner, deep neural networks tend to forget tasks that they previously learned, a phenomenon called catastrophic forgetting. Class incremental learning methods aim to address this problem by keeping a memory of a few exemplars from previously learned tasks, and distilling knowledge from them. However, existing methods struggle to balance the performance across classes since they typically overfit the model to the latest task. In our work, we propose to address these challenges with the introduction of a novel methodology of Tangent Kernel for Incremental Learning (TKIL) that achieves class-balanced performance. The approach preserves the representations across classes and balances the accuracy for each class, and as such achieves better overall accuracy and variance. TKIL approach is based on Neural Tangent Kernel (NTK), which describes the convergence behavior of neural networks as a kernel function in the limit of infinite width. In TKIL, the gradients between feature layers are treated as the distance between the representations of these layers and can be defined as Gradients Tangent Kernel loss (GTK loss) such that it is minimized along with averaging weights. This allows TKIL to automatically identify the task and to quickly adapt to it during inference. Experiments on CIFAR-100 and ImageNet datasets with various incremental learning settings show that these strategies allow TKIL to outperform existing state-of-the-art methods.
Abstract:Modeling neural population dynamics underlying noisy single-trial spiking activities is essential for relating neural observation and behavior. A recent non-recurrent method - Neural Data Transformers (NDT) - has shown great success in capturing neural dynamics with low inference latency without an explicit dynamical model. However, NDT focuses on modeling the temporal evolution of the population activity while neglecting the rich covariation between individual neurons. In this paper we introduce SpatioTemporal Neural Data Transformer (STNDT), an NDT-based architecture that explicitly models responses of individual neurons in the population across time and space to uncover their underlying firing rates. In addition, we propose a contrastive learning loss that works in accordance with mask modeling objective to further improve the predictive performance. We show that our model achieves state-of-the-art performance on ensemble level in estimating neural activities across four neural datasets, demonstrating its capability to capture autonomous and non-autonomous dynamics spanning different cortical regions while being completely agnostic to the specific behaviors at hand. Furthermore, STNDT spatial attention mechanism reveals consistently important subsets of neurons that play a vital role in driving the response of the entire population, providing interpretability and key insights into how the population of neurons performs computation.
Abstract:Recurrent Neural Networks (RNN) are ubiquitous computing systems for sequences and multivariate time series data. While several robust architectures of RNN are known, it is unclear how to relate RNN initialization, architecture, and other hyperparameters with accuracy for a given task. In this work, we propose to treat RNN as dynamical systems and to correlate hyperparameters with accuracy through Lyapunov spectral analysis, a methodology specifically designed for nonlinear dynamical systems. To address the fact that RNN features go beyond the existing Lyapunov spectral analysis, we propose to infer relevant features from the Lyapunov spectrum with an Autoencoder and an embedding of its latent representation (AeLLE). Our studies of various RNN architectures show that AeLLE successfully correlates RNN Lyapunov spectrum with accuracy. Furthermore, the latent representation learned by AeLLE is generalizable to novel inputs from the same task and is formed early in the process of RNN training. The latter property allows for the prediction of the accuracy to which RNN would converge when training is complete. We conclude that representation of RNN through Lyapunov spectrum along with AeLLE, and assists with hyperparameter selection of RNN, provides a novel method for organization and interpretation of variants of RNN architectures.