Abstract:While current methods have shown promising progress on estimating 3D human motion from monocular videos, their motion estimates are often physically unrealistic because they mainly consider kinematics. In this paper, we introduce Physics-aware Pretrained Transformer (PhysPT), which improves kinematics-based motion estimates and infers motion forces. PhysPT exploits a Transformer encoder-decoder backbone to effectively learn human dynamics in a self-supervised manner. Moreover, it incorporates physics principles governing human motion. Specifically, we build a physics-based body representation and contact force model. We leverage them to impose novel physics-inspired training losses (i.e., force loss, contact loss, and Euler-Lagrange loss), enabling PhysPT to capture physical properties of the human body and the forces it experiences. Experiments demonstrate that, once trained, PhysPT can be directly applied to kinematics-based estimates to significantly enhance their physical plausibility and generate favourable motion forces. Furthermore, we show that these physically meaningful quantities translate into improved accuracy of an important downstream task: human action recognition.
Abstract:Recent years have witnessed the sustained evolution of misinformation that aims at manipulating public opinions. Unlike traditional rumors or fake news editors who mainly rely on generated and/or counterfeited images, text and videos, current misinformation creators now more tend to use out-of-context multimedia contents (e.g. mismatched images and captions) to deceive the public and fake news detection systems. This new type of misinformation increases the difficulty of not only detection but also clarification, because every individual modality is close enough to true information. To address this challenge, in this paper we explore how to achieve interpretable cross-modal de-contextualization detection that simultaneously identifies the mismatched pairs and the cross-modal contradictions, which is helpful for fact-check websites to document clarifications. The proposed model first symbolically disassembles the text-modality information to a set of fact queries based on the Abstract Meaning Representation of the caption and then forwards the query-image pairs into a pre-trained large vision-language model select the ``evidences" that are helpful for us to detect misinformation. Extensive experiments indicate that the proposed methodology can provide us with much more interpretable predictions while maintaining the accuracy same as the state-of-the-art model on this task.
Abstract:Deep learning models, though having achieved great success in many different fields over the past years, are usually data hungry, fail to perform well on unseen samples, and lack of interpretability. Various prior knowledge often exists in the target domain and their use can alleviate the deficiencies with deep learning. To better mimic the behavior of human brains, different advanced methods have been proposed to identify domain knowledge and integrate it into deep models for data-efficient, generalizable, and interpretable deep learning, which we refer to as knowledge-augmented deep learning (KADL). In this survey, we define the concept of KADL, and introduce its three major tasks, i.e., knowledge identification, knowledge representation, and knowledge integration. Different from existing surveys that are focused on a specific type of knowledge, we provide a broad and complete taxonomy of domain knowledge and its representations. Based on our taxonomy, we provide a systematic review of existing techniques, different from existing works that survey integration approaches agnostic to taxonomy of knowledge. This survey subsumes existing works and offers a bird's-eye view of research in the general area of knowledge-augmented deep learning. The thorough and critical reviews of numerous papers help not only understand current progresses but also identify future directions for the research on knowledge-augmented deep learning.
Abstract:Causal discovery is to learn cause-effect relationships among variables given observational data and is important for many applications. Existing causal discovery methods assume data sufficiency, which may not be the case in many real world datasets. As a result, many existing causal discovery methods can fail under limited data. In this work, we propose Bayesian-augmented frequentist independence tests to improve the performance of constraint-based causal discovery methods under insufficient data: 1) We firstly introduce a Bayesian method to estimate mutual information (MI), based on which we propose a robust MI based independence test; 2) Secondly, we consider the Bayesian estimation of hypothesis likelihood and incorporate it into a well-defined statistical test, resulting in a robust statistical testing based independence test. We apply proposed independence tests to constraint-based causal discovery methods and evaluate the performance on benchmark datasets with insufficient samples. Experiments show significant performance improvement in terms of both accuracy and efficiency over SOTA methods.
Abstract:Knowledge graphs (KGs) are of great importance to many real world applications, but they generally suffer from incomplete information in the form of missing relations between entities. Knowledge graph completion (also known as relation prediction) is the task of inferring missing facts given existing ones. Most of the existing work is proposed by maximizing the likelihood of observed instance-level triples. Not much attention, however, is paid to the ontological information, such as type information of entities and relations. In this work, we propose a type-augmented relation prediction (TaRP) method, where we apply both the type information and instance-level information for relation prediction. In particular, type information and instance-level information are encoded as prior probabilities and likelihoods of relations respectively, and are combined by following Bayes' rule. Our proposed TaRP method achieves significantly better performance than state-of-the-art methods on three benchmark datasets: FB15K, YAGO26K-906, and DB111K-174. In addition, we show that TaRP achieves significantly improved data efficiency. More importantly, the type information extracted from a specific dataset can generalize well to other datasets through the proposed TaRP model.