Abstract:This study presents an efficient implementation of transformer architectures in Field-Programmable Gate Arrays(FPGAs) using hls4ml. We demonstrate the strategy for implementing the multi-head attention, softmax, and normalization layer and evaluate three distinct models. Their deployment on VU13P FPGA chip achieved latency less than 2us, demonstrating the potential for real-time applications. HLS4ML compatibility with any TensorFlow-built transformer model further enhances the scalability and applicability of this work. Index Terms: FPGAs, machine learning, transformers, high energy physics, LIGO
Abstract:We report a gravitational-wave parameter estimation algorithm, AMPLFI, based on likelihood-free inference using normalizing flows. The focus of AMPLFI is to perform real-time parameter estimation for candidates detected by machine-learning based compact binary coalescence search, Aframe. We present details of our algorithm and optimizations done related to data-loading and pre-processing on accelerated hardware. We train our model using binary black-hole (BBH) simulations on real LIGO-Virgo detector noise. Our model has $\sim 6$ million trainable parameters with training times $\lesssim 24$ hours. Based on online deployment on a mock data stream of LIGO-Virgo data, Aframe + AMPLFI is able to pick up BBH candidates and infer parameters for real-time alerts from data acquisition with a net latency of $\sim 6$s.
Abstract:This work introduces a highly efficient implementation of the transformer architecture on a Field-Programmable Gate Array (FPGA) by using the \texttt{hls4ml} tool. Given the demonstrated effectiveness of transformer models in addressing a wide range of problems, their application in experimental triggers within particle physics becomes a subject of significant interest. In this work, we have implemented critical components of a transformer model, such as multi-head attention and softmax layers. To evaluate the effectiveness of our implementation, we have focused on a particle physics jet flavor tagging problem, employing a public dataset. We recorded latency under 2 $\mu$s on the Xilinx UltraScale+ FPGA, which is compatible with hardware trigger requirements at the CERN Large Hadron Collider experiments.
Abstract:Unsupervised deep learning techniques are widely used to identify anomalous behaviour. The performance of such methods is a product of the amount of training data and the model size. However, the size is often a limiting factor for the deployment on resource-constrained devices. We present a novel procedure based on knowledge distillation for compressing an unsupervised anomaly detection model into a supervised deployable one and we suggest a set of techniques to improve the detection sensitivity. Compressed models perform comparably to their larger counterparts while significantly reducing the size and memory footprint.
Abstract:The high-energy physics community is investigating the feasibility of deploying machine-learning-based solutions on Field-Programmable Gate Arrays (FPGAs) to improve physics sensitivity while meeting data processing latency limitations. In this contribution, we introduce a novel end-to-end procedure that utilizes a machine learning technique called symbolic regression (SR). It searches equation space to discover algebraic relations approximating a dataset. We use PySR (software for uncovering these expressions based on evolutionary algorithm) and extend the functionality of hls4ml (a package for machine learning inference in FPGAs) to support PySR-generated expressions for resource-constrained production environments. Deep learning models often optimise the top metric by pinning the network size because vast hyperparameter space prevents extensive neural architecture search. Conversely, SR selects a set of models on the Pareto front, which allows for optimising the performance-resource tradeoff directly. By embedding symbolic forms, our implementation can dramatically reduce the computational resources needed to perform critical tasks. We validate our procedure on a physics benchmark: multiclass classification of jets produced in simulated proton-proton collisions at the CERN Large Hadron Collider, and show that we approximate a 3-layer neural network with an inference model that has as low as 5 ns execution time (a reduction by a factor of 13) and over 90% approximation accuracy.
Abstract:We apply object detection techniques based on deep convolutional blocks to end-to-end jet identification and reconstruction tasks encountered at the CERN Large Hadron Collider (LHC). Collision events produced at the LHC and represented as an image composed of calorimeter and tracker cells are given as an input to a Single Shot Detection network. The algorithm, named PFJet-SSD performs simultaneous localization, classification and regression tasks to cluster jets and reconstruct their features. This all-in-one single feed-forward pass gives advantages in terms of execution time and an improved accuracy w.r.t. traditional rule-based methods. A further gain is obtained from network slimming, homogeneous quantization, and optimized runtime for meeting memory and latency constraints of a typical real-time processing environment. We experiment with 8-bit and ternary quantization, benchmarking their accuracy and inference latency against a single-precision floating-point. We show that the ternary network closely matches the performance of its full-precision equivalent and outperforms the state-of-the-art rule-based algorithm. Finally, we report the inference latency on different hardware platforms and discuss future applications.
Abstract:In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.