Abstract:Test generation has been a critical and labor-intensive process in hardware design verification. Recently, the emergence of Large Language Model (LLM) with their advanced understanding and inference capabilities, has introduced a novel approach. In this work, we investigate the integration of LLM into the Coverage Directed Test Generation (CDG) process, where the LLM functions as a Verilog Reader. It accurately grasps the code logic, thereby generating stimuli that can reach unexplored code branches. We compare our framework with random testing, using our self-designed Verilog benchmark suite. Experiments demonstrate that our framework outperforms random testing on designs within the LLM's comprehension scope. Our work also proposes prompt engineering optimizations to augment LLM's understanding scope and accuracy.
Abstract:Boolean Satisfiability problems are vital components in Electronic Design Automation, particularly within the Logic Equivalence Checking process. Currently, SAT solvers are employed for these problems and neural network is tried as assistance to solvers. However, as SAT problems in the LEC context are distinctive due to their predominantly unsatisfiability nature and a substantial proportion of UNSAT-core variables, existing neural network assistance has proven unsuccessful in this specialized domain. To tackle this challenge, we propose IB-Net, an innovative framework utilizing graph neural networks and novel graph encoding techniques to model unsatisfiable problems and interact with state-of-the-art solvers. Extensive evaluations across solvers and datasets demonstrate IB-Net's acceleration, achieving an average runtime speedup of 5.0% on industrial data and 8.3% on SAT competition data empirically. This breakthrough advances efficient solving in LEC workflows.
Abstract:Circuit representation learning aims to obtain neural representations of circuit elements and has emerged as a promising research direction that can be applied to various EDA and logic reasoning tasks. Existing solutions, such as DeepGate, have the potential to embed both circuit structural information and functional behavior. However, their capabilities are limited due to weak supervision or flawed model design, resulting in unsatisfactory performance in downstream tasks. In this paper, we introduce DeepGate2, a novel functionality-aware learning framework that significantly improves upon the original DeepGate solution in terms of both learning effectiveness and efficiency. Our approach involves using pairwise truth table differences between sampled logic gates as training supervision, along with a well-designed and scalable loss function that explicitly considers circuit functionality. Additionally, we consider inherent circuit characteristics and design an efficient one-round graph neural network (GNN), resulting in an order of magnitude faster learning speed than the original DeepGate solution. Experimental results demonstrate significant improvements in two practical downstream tasks: logic synthesis and Boolean satisfiability solving. The code is available at https://github.com/cure-lab/DeepGate2
Abstract:Due to the increasing challenges posed by the relentless rise in the design complexity of integrated circuits, Boolean Satisfiability (SAT) has emerged as a robust alternative to structural APTG techniques. However, the high cost of transforming a circuit testing problem to a Conjunctive Normal Form (CNF) limits the application of SAT in industrial ATPG scenarios, resulting in a loss of test coverage. In Order to address this problem, this paper proposes a conflict-driven structural learning (CDSL) ATPG algorithm firstly, in which the conflict-driven heuristic methods in modern SAT solver are implemented on the logic cone of fault propagation and activation directly. The proposed CDSL algorithm is composed of three parts: (1) According to the implication graph, various conflict constraints have been learned to prune search space. (2) Conflict-driven implication and justification have been applied to increase decision accuracy and solving efficiency. (3) A conflict-based diagnosis method is further proposed in the case of low coverage debug, leading to making the aborted faults testable by relaxing or modifying some constraints on primary inputs. Extensive experimental results on industrial circuits demonstrate the effectiveness and efficiency of the proposed CDSL algorithm. It is shown that compared with the SAT-based ATPG, the proposed CDSL can on average decrease $25.6\%$ aborted faults with $94.51\%$ less run time. With a two-stage computational flow, it has shown that the proposed CDSL can lead to $46.37\%$ less aborted faults than a one-stage structural algorithm, further with the $3.19\%$ improvement on fault coverage. In addition, the conflict diagnosis can lead to $8.89\%$ less aborted faults on average, and $0.271\%$ improvement in fault coverage rate.
Abstract:Industrial SAT formula generation is a critical yet challenging task for heuristic development and the surging learning-based methods in practical SAT applications. Existing SAT generation approaches can hardly simultaneously capture the global structural properties and maintain plausible computational hardness, which can be hazardous for the various downstream engagements. To this end, we first present an in-depth analysis for the limitation of previous learning methods in reproducing the computational hardness of original instances, which may stem from the inherent homogeneity in their adopted split-merge procedure. On top of the observations that industrial formulae exhibit clear community structure and oversplit substructures lead to the difficulty in semantic formation of logical structures, we propose HardSATGEN, which introduces a fine-grained control mechanism to the neural split-merge paradigm for SAT formula generation to better recover the structural and computational properties of the industrial benchmarks. Experimental results including evaluations on private corporate data and hyperparameter tuning over solvers in practical use show the significant superiority of HardSATGEN being the only method to successfully augments formulae maintaining similar computational hardness and capturing the global structural properties simultaneously. Compared to the best previous methods to our best knowledge, the average performance gains achieve 38.5% in structural statistics, 88.4% in computational metrics, and over 140.7% in the effectiveness of guiding solver development tuned by our generated instances.