Abstract:Gait recognition is a crucial biometric identification technique. Camera-based gait recognition has been widely applied in both research and industrial fields. LiDAR-based gait recognition has also begun to evolve most recently, due to the provision of 3D structural information. However, in certain applications, cameras fail to recognize persons, such as in low-light environments and long-distance recognition scenarios, where LiDARs work well. On the other hand, the deployment cost and complexity of LiDAR systems limit its wider application. Therefore, it is essential to consider cross-modality gait recognition between cameras and LiDARs for a broader range of applications. In this work, we propose the first cross-modality gait recognition framework between Camera and LiDAR, namely CL-Gait. It employs a two-stream network for feature embedding of both modalities. This poses a challenging recognition task due to the inherent matching between 3D and 2D data, exhibiting significant modality discrepancy. To align the feature spaces of the two modalities, i.e., camera silhouettes and LiDAR points, we propose a contrastive pre-training strategy to mitigate modality discrepancy. To make up for the absence of paired camera-LiDAR data for pre-training, we also introduce a strategy for generating data on a large scale. This strategy utilizes monocular depth estimated from single RGB images and virtual cameras to generate pseudo point clouds for contrastive pre-training. Extensive experiments show that the cross-modality gait recognition is very challenging but still contains potential and feasibility with our proposed model and pre-training strategy. To the best of our knowledge, this is the first work to address cross-modality gait recognition.
Abstract:Sports analysis and viewing play a pivotal role in the current sports domain, offering significant value not only to coaches and athletes but also to fans and the media. In recent years, the rapid development of virtual reality (VR) and augmented reality (AR) technologies have introduced a new platform for watching games. Visualization of sports competitions in VR/AR represents a revolutionary technology, providing audiences with a novel immersive viewing experience. However, there is still a lack of related research in this area. In this work, we present for the first time a comprehensive system for sports competition analysis and real-time visualization on VR/AR platforms. First, we utilize multiview LiDARs and cameras to collect multimodal game data. Subsequently, we propose a framework for multi-player tracking and pose estimation based on a limited amount of supervised data, which extracts precise player positions and movements from point clouds and images. Moreover, we perform avatar modeling of players to obtain their 3D models. Ultimately, using these 3D player data, we conduct competition analysis and real-time visualization on VR/AR. Extensive quantitative experiments demonstrate the accuracy and robustness of our multi-player tracking and pose estimation framework. The visualization results showcase the immense potential of our sports visualization system on the domain of watching games on VR/AR devices. The multimodal competition dataset we collected and all related code will be released soon.
Abstract:Facility location problems on graphs are ubiquitous in real world and hold significant importance, yet their resolution is often impeded by NP-hardness. Recently, machine learning methods have been proposed to tackle such classical problems, but they are limited to the myopic constructive pattern and only consider the problems in Euclidean space. To overcome these limitations, we propose a general swap-based framework that addresses the p-median problem and the facility relocation problem on graphs and a novel reinforcement learning model demonstrating a keen awareness of complex graph structures. Striking a harmonious balance between solution quality and running time, our method surpasses handcrafted heuristics on intricate graph datasets. Additionally, we introduce a graph generation process to simulate real-world urban road networks with demand, facilitating the construction of large datasets for the classic problem. For the initialization of the locations of facilities, we introduce a physics-inspired strategy for the p-median problem, reaching more stable solutions than the random strategy. The proposed pipeline coupling the classic swap-based method with deep reinforcement learning marks a significant step forward in addressing the practical challenges associated with facility location on graphs.
Abstract:Recently, several methods have been proposed to estimate 3D human pose from multi-view images and achieved impressive performance on public datasets collected in relatively easy scenarios. However, there are limited approaches for extracting 3D human skeletons from multimodal inputs (e.g., RGB and pointcloud) that can enhance the accuracy of predicting 3D poses in challenging situations. We fill this gap by introducing a pipeline called PointVoxel that fuses multi-view RGB and pointcloud inputs to obtain 3D human poses. We demonstrate that volumetric representation is an effective architecture for integrating these different modalities. Moreover, in order to overcome the challenges of annotating 3D human pose labels in difficult scenarios, we develop a synthetic dataset generator for pretraining and design an unsupervised domain adaptation strategy so that we can obtain a well-trained 3D human pose estimator without using any manual annotations. We evaluate our approach on four datasets (two public datasets, one synthetic dataset, and one challenging dataset named BasketBall collected by ourselves), showing promising results. The code and dataset will be released soon.
Abstract:Camera-based person re-identification (ReID) systems have been widely applied in the field of public security. However, cameras often lack the perception of 3D morphological information of human and are susceptible to various limitations, such as inadequate illumination, complex background, and personal privacy. In this paper, we propose a LiDAR-based ReID framework, ReID3D, that utilizes pre-training strategy to retrieve features of 3D body shape and introduces Graph-based Complementary Enhancement Encoder for extracting comprehensive features. Due to the lack of LiDAR datasets, we build LReID, the first LiDAR-based person ReID dataset, which is collected in several outdoor scenes with variations in natural conditions. Additionally, we introduce LReID-sync, a simulated pedestrian dataset designed for pre-training encoders with tasks of point cloud completion and shape parameter learning. Extensive experiments on LReID show that ReID3D achieves exceptional performance with a rank-1 accuracy of 94.0, highlighting the significant potential of LiDAR in addressing person ReID tasks. To the best of our knowledge, we are the first to propose a solution for LiDAR-based ReID. The code and datasets will be released soon.
Abstract:In this paper, we present a novel registration framework, HumanReg, that learns a non-rigid transformation between two human point clouds end-to-end. We introduce body prior into the registration process to efficiently handle this type of point cloud. Unlike most exsisting supervised registration techniques that require expensive point-wise flow annotations, HumanReg can be trained in a self-supervised manner benefiting from a set of novel loss functions. To make our model better converge on real-world data, we also propose a pretraining strategy, and a synthetic dataset (HumanSyn4D) consists of dynamic, sparse human point clouds and their auto-generated ground truth annotations. Our experiments shows that HumanReg achieves state-of-the-art performance on CAPE-512 dataset and gains a qualitative result on another more challenging real-world dataset. Furthermore, our ablation studies demonstrate the effectiveness of our synthetic dataset and novel loss functions. Our code and synthetic dataset is available at https://github.com/chenyifanthu/HumanReg.
Abstract:3D human pose estimation in outdoor environments has garnered increasing attention recently. However, prevalent 3D human pose datasets pertaining to outdoor scenes lack diversity, as they predominantly utilize only one type of modality (RGB image or pointcloud), and often feature only one individual within each scene. This limited scope of dataset infrastructure considerably hinders the variability of available data. In this article, we propose Human-M3, an outdoor multi-modal multi-view multi-person human pose database which includes not only multi-view RGB videos of outdoor scenes but also corresponding pointclouds. In order to obtain accurate human poses, we propose an algorithm based on multi-modal data input to generate ground truth annotation. This benefits from robust pointcloud detection and tracking, which solves the problem of inaccurate human localization and matching ambiguity that may exist in previous multi-view RGB videos in outdoor multi-person scenes, and generates reliable ground truth annotations. Evaluation of multiple different modalities algorithms has shown that this database is challenging and suitable for future research. Furthermore, we propose a 3D human pose estimation algorithm based on multi-modal data input, which demonstrates the advantages of multi-modal data input for 3D human pose estimation. Code and data will be released on https://github.com/soullessrobot/Human-M3-Dataset.
Abstract:Multi-view imaging systems enable uniform coverage of 3D space and reduce the impact of occlusion, which is beneficial for 3D object detection and tracking accuracy. However, existing imaging systems built with multi-view cameras or depth sensors are limited by the small applicable scene and complicated composition. In this paper, we propose a wireless multi-view multi-modal 3D imaging system generally applicable to large outdoor scenes, which consists of a master node and several slave nodes. Multiple spatially distributed slave nodes equipped with cameras and LiDARs are connected to form a wireless sensor network. While providing flexibility and scalability, the system applies automatic spatio-temporal calibration techniques to obtain accurate 3D multi-view multi-modal data. This system is the first imaging system that integrates mutli-view RGB cameras and LiDARs in large outdoor scenes among existing 3D imaging systems. We perform point clouds based 3D object detection and long-term tracking using the 3D imaging dataset collected by this system. The experimental results show that multi-view point clouds greatly improve 3D object detection and tracking accuracy regardless of complex and various outdoor environments.
Abstract:Industrial SAT formula generation is a critical yet challenging task for heuristic development and the surging learning-based methods in practical SAT applications. Existing SAT generation approaches can hardly simultaneously capture the global structural properties and maintain plausible computational hardness, which can be hazardous for the various downstream engagements. To this end, we first present an in-depth analysis for the limitation of previous learning methods in reproducing the computational hardness of original instances, which may stem from the inherent homogeneity in their adopted split-merge procedure. On top of the observations that industrial formulae exhibit clear community structure and oversplit substructures lead to the difficulty in semantic formation of logical structures, we propose HardSATGEN, which introduces a fine-grained control mechanism to the neural split-merge paradigm for SAT formula generation to better recover the structural and computational properties of the industrial benchmarks. Experimental results including evaluations on private corporate data and hyperparameter tuning over solvers in practical use show the significant superiority of HardSATGEN being the only method to successfully augments formulae maintaining similar computational hardness and capturing the global structural properties simultaneously. Compared to the best previous methods to our best knowledge, the average performance gains achieve 38.5% in structural statistics, 88.4% in computational metrics, and over 140.7% in the effectiveness of guiding solver development tuned by our generated instances.
Abstract:Comparing representations of complex stimuli in neural network layers to human brain representations or behavioral judgments can guide model development. However, even qualitatively distinct neural network models often predict similar representational geometries of typical stimulus sets. We propose a Bayesian experimental design approach to synthesizing stimulus sets for adjudicating among representational models efficiently. We apply our method to discriminate among candidate neural network models of behavioral face dissimilarity judgments. Our results indicate that a neural network trained to invert a 3D-face-model graphics renderer is more human-aligned than the same architecture trained on identification, classification, or autoencoding. Our proposed stimulus synthesis objective is generally applicable to designing experiments to be analyzed by representational similarity analysis for model comparison.