Abstract:The rapid growth of the financial sector and the rising focus on Environmental, Social, and Governance (ESG) considerations highlight the need for advanced NLP tools. However, open-source LLMs proficient in both finance and ESG domains remain scarce. To address this gap, we introduce SusGen-30K, a category-balanced dataset comprising seven financial NLP tasks and ESG report generation, and propose TCFD-Bench, a benchmark for evaluating sustainability report generation. Leveraging this dataset, we developed SusGen-GPT, a suite of models achieving state-of-the-art performance across six adapted and two off-the-shelf tasks, trailing GPT-4 by only 2% despite using 7-8B parameters compared to GPT-4's 1,700B. Based on this, we propose the SusGen system, integrated with Retrieval-Augmented Generation (RAG), to assist in sustainability report generation. This work demonstrates the efficiency of our approach, advancing research in finance and ESG.
Abstract:Large language models (LLMs) often necessitate extensive labeled datasets and training compute to achieve impressive performance across downstream tasks. This paper explores a self-training paradigm, where the LLM autonomously curates its own labels and selectively trains on unknown data samples identified through a reference-free consistency method. Empirical evaluations demonstrate significant improvements in reducing hallucination in generation across multiple subjects. Furthermore, the selective training framework mitigates catastrophic forgetting in out-of-distribution benchmarks, addressing a critical limitation in training LLMs. Our findings suggest that such an approach can substantially reduce the dependency on large labeled datasets, paving the way for more scalable and cost-effective language model training.
Abstract:Prompt Engineering has garnered significant attention for enhancing the performance of large language models across a multitude of tasks. Techniques such as the Chain-of-Thought not only bolster task performance but also delineate a clear trajectory of reasoning steps, offering a tangible form of explanation for the audience. Prior works on interpretability assess the reasoning chains yielded by Chain-of-Thought solely along a singular axis, namely faithfulness. We present a comprehensive and multifaceted evaluation of interpretability, examining not only faithfulness but also robustness and utility across multiple commonsense reasoning benchmarks. Likewise, our investigation is not confined to a single prompting technique; it expansively covers a multitude of prevalent prompting techniques employed in large language models, thereby ensuring a wide-ranging and exhaustive evaluation. In addition, we introduce a simple interpretability alignment technique, termed Self-Entailment-Alignment Chain-of-thought, that yields more than 70\% improvements across multiple dimensions of interpretability. Code is available at https://github.com/wj210/CoT_interpretability
Abstract:The increasing use of complex and opaque black box models requires the adoption of interpretable measures, one such option is extractive rationalizing models, which serve as a more interpretable alternative. These models, also known as Explain-Then-Predict models, employ an explainer model to extract rationales and subsequently condition the predictor with the extracted information. Their primary objective is to provide precise and faithful explanations, represented by the extracted rationales. In this paper, we take a semi-supervised approach to optimize for the plausibility of extracted rationales. We adopt a pre-trained natural language inference (NLI) model and further fine-tune it on a small set of supervised rationales ($10\%$). The NLI predictor is leveraged as a source of supervisory signals to the explainer via entailment alignment. We show that, by enforcing the alignment agreement between the explanation and answer in a question-answering task, the performance can be improved without access to ground truth labels. We evaluate our approach on the ERASER dataset and show that our approach achieves comparable results with supervised extractive models and outperforms unsupervised approaches by $> 100\%$.
Abstract:The success of artificial intelligence (AI), and deep learning models in particular, has led to their widespread adoption across various industries due to their ability to process huge amounts of data and learn complex patterns. However, due to their lack of explainability, there are significant concerns regarding their use in critical sectors, such as finance and healthcare, where decision-making transparency is of paramount importance. In this paper, we provide a comparative survey of methods that aim to improve the explainability of deep learning models within the context of finance. We categorize the collection of explainable AI methods according to their corresponding characteristics, and we review the concerns and challenges of adopting explainable AI methods, together with future directions we deemed appropriate and important.
Abstract:In this technical survey, we comprehensively summarize the latest advancements in the field of recommender systems. The objective of this study is to provide an overview of the current state-of-the-art in the field and highlight the latest trends in the development of recommender systems. The study starts with a comprehensive summary of the main taxonomy of recommender systems, including personalized and group recommender systems, and then delves into the category of knowledge-based recommender systems. In addition, the survey analyzes the robustness, data bias, and fairness issues in recommender systems, summarizing the evaluation metrics used to assess the performance of these systems. Finally, the study provides insights into the latest trends in the development of recommender systems and highlights the new directions for future research in the field.
Abstract:This paper presents a novel approach for explainability in financial analysis by utilizing the Pearson correlation coefficient to establish a relationship between aspect-based sentiment analysis and stock prices. The proposed methodology involves constructing an aspect list from financial news articles and analyzing sentiment intensity scores for each aspect. These scores are then compared to the stock prices for the relevant companies using the Pearson coefficient to determine any significant correlations. The results indicate that the proposed approach provides a more detailed and accurate understanding of the relationship between sentiment analysis and stock prices, which can be useful for investors and financial analysts in making informed decisions. Additionally, this methodology offers a transparent and interpretable way to explain the sentiment analysis results and their impact on stock prices. Overall, the findings of this paper demonstrate the importance of explainability in financial analysis and highlight the potential benefits of utilizing the Pearson coefficient for analyzing aspect-based sentiment analysis and stock prices. The proposed approach offers a valuable tool for understanding the complex relationships between financial news sentiment and stock prices, providing a new perspective on the financial market and aiding in making informed investment decisions.
Abstract:Multitask learning often helps improve the performance of related tasks as these often have inter-dependence on each other and perform better when solved in a joint framework. In this paper, we present a deep multitask learning framework that jointly performs polarity and subjective detection. We propose an attention-based multitask model for predicting polarity and subjectivity. The input sentences are transformed into vectors using pre-trained BERT and Glove embeddings, and the results depict that BERT embedding based model works better than the Glove based model. We compare our approach with state-of-the-art models in both subjective and polarity classification single-task and multitask frameworks. The proposed approach reports baseline performances for both polarity detection and subjectivity detection.
Abstract:Hiring robots for the workplaces is a challenging task as robots have to cater to customer demands, follow organizational protocols and behave with social etiquette. In this study, we propose to have a humanoid social robot, Nadine, as a customer service agent in an open social work environment. The objective of this study is to analyze the effects of humanoid robots on customers at work environment, and see if it can handle social scenarios. We propose to evaluate these objectives through two modes, namely, survey questionnaire and customer feedback. We also propose a novel approach to analyze customer feedback data (text) using sentic computing methods. Specifically, we employ aspect extraction and sentiment analysis to analyze the data. From our framework, we detect sentiment associated to the aspects that mainly concerned the customers during their interaction. This allows us to understand customers expectations and current limitations of robots as employees.
Abstract:With the current upsurge in the usage of social media platforms, the trend of using short text (microtext) in place of standard words has seen a significant rise. The usage of microtext poses a considerable performance issue in concept-level sentiment analysis, since models are trained on standard words. This paper discusses the impact of coupling sub-symbolic (phonetics) with symbolic (machine learning) Artificial Intelligence to transform the out-of-vocabulary concepts into their standard in-vocabulary form. The phonetic distance is calculated using the Sorensen similarity algorithm. The phonetically similar invocabulary concepts thus obtained are then used to compute the correct polarity value, which was previously being miscalculated because of the presence of microtext. Our proposed framework increases the accuracy of polarity detection by 6% as compared to the earlier model. This also validates the fact that microtext normalization is a necessary pre-requisite for the sentiment analysis task.