Abstract:Bundle recommendations strive to offer users a set of items as a package named bundle, enhancing convenience and contributing to the seller's revenue. While previous approaches have demonstrated notable performance, we argue that they may compromise the ternary relationship among users, items, and bundles. This compromise can result in information loss, ultimately impacting the overall model performance. To address this gap, we develop a unified model for bundle recommendation, termed hypergraph-enhanced dual convolutional neural network (HED). Our approach is characterized by two key aspects. Firstly, we construct a complete hypergraph to capture interaction dynamics among users, items, and bundles. Secondly, we incorporate U-B interaction information to enhance the information representation derived from users and bundle embedding vectors. Extensive experimental results on the Youshu and Netease datasets have demonstrated that HED surpasses state-of-the-art baselines, proving its effectiveness. In addition, various ablation studies and sensitivity analyses revealed the working mechanism and proved our effectiveness. Codes and datasets are available at https://github.com/AAI-Lab/HED
Abstract:In this technical survey, we comprehensively summarize the latest advancements in the field of recommender systems. The objective of this study is to provide an overview of the current state-of-the-art in the field and highlight the latest trends in the development of recommender systems. The study starts with a comprehensive summary of the main taxonomy of recommender systems, including personalized and group recommender systems, and then delves into the category of knowledge-based recommender systems. In addition, the survey analyzes the robustness, data bias, and fairness issues in recommender systems, summarizing the evaluation metrics used to assess the performance of these systems. Finally, the study provides insights into the latest trends in the development of recommender systems and highlights the new directions for future research in the field.