Abstract:The rotation robustness property has drawn much attention to point cloud analysis, whereas it still poses a critical challenge in 3D object detection. When subjected to arbitrary rotation, most existing detectors fail to produce expected outputs due to the poor rotation robustness. In this paper, we present RIDE, a pioneering exploration of Rotation-Invariance for the 3D LiDAR-point-based object DEtector, with the key idea of designing rotation-invariant features from LiDAR scenes and then effectively incorporating them into existing 3D detectors. Specifically, we design a bi-feature extractor that extracts (i) object-aware features though sensitive to rotation but preserve geometry well, and (ii) rotation-invariant features, which lose geometric information to a certain extent but are robust to rotation. These two kinds of features complement each other to decode 3D proposals that are robust to arbitrary rotations. Particularly, our RIDE is compatible and easy to plug into the existing one-stage and two-stage 3D detectors, and boosts both detection performance and rotation robustness. Extensive experiments on the standard benchmarks showcase that the mean average precision (mAP) and rotation robustness can be significantly boosted by integrating with our RIDE, with +5.6% mAP and 53% rotation robustness improvement on KITTI, +5.1% and 28% improvement correspondingly on nuScenes. The code will be available soon.
Abstract:Acute intracerebral hemorrhage is a life-threatening condition that demands immediate medical intervention. Intraparenchymal hemorrhage (IPH) and intraventricular hemorrhage (IVH) are critical subtypes of this condition. Clinically, when such hemorrhages are suspected, immediate CT scanning is essential to assess the extent of the bleeding and to facilitate the formulation of a targeted treatment plan. While current research in deep learning has largely focused on qualitative analyses, such as identifying subtypes of cerebral hemorrhages, there remains a significant gap in quantitative analysis crucial for enhancing clinical treatments. Addressing this gap, our paper introduces a dataset comprising 222 CT annotations, sourced from the RSNA 2019 Brain CT Hemorrhage Challenge and meticulously annotated at the voxel level for precise IPH and IVH segmentation. This dataset was utilized to train and evaluate seven advanced medical image segmentation algorithms, with the goal of refining the accuracy of segmentation for these hemorrhages. Our findings demonstrate that this dataset not only furthers the development of sophisticated segmentation algorithms but also substantially aids scientific research and clinical practice by improving the diagnosis and management of these severe hemorrhages. Our dataset and codes are available at \url{https://github.com/songchangwei/3DCT-SD-IVH-ICH}.
Abstract:Existing Transformer-based models for point cloud analysis suffer from quadratic complexity, leading to compromised point cloud resolution and information loss. In contrast, the newly proposed Mamba model, based on state space models (SSM), outperforms Transformer in multiple areas with only linear complexity. However, the straightforward adoption of Mamba does not achieve satisfactory performance on point cloud tasks. In this work, we present Mamba3D, a state space model tailored for point cloud learning to enhance local feature extraction, achieving superior performance, high efficiency, and scalability potential. Specifically, we propose a simple yet effective Local Norm Pooling (LNP) block to extract local geometric features. Additionally, to obtain better global features, we introduce a bidirectional SSM (bi-SSM) with both a token forward SSM and a novel backward SSM that operates on the feature channel. Extensive experimental results show that Mamba3D surpasses Transformer-based counterparts and concurrent works in multiple tasks, with or without pre-training. Notably, Mamba3D achieves multiple SoTA, including an overall accuracy of 92.6% (train from scratch) on the ScanObjectNN and 95.1% (with single-modal pre-training) on the ModelNet40 classification task, with only linear complexity.
Abstract:Bundle recommendations strive to offer users a set of items as a package named bundle, enhancing convenience and contributing to the seller's revenue. While previous approaches have demonstrated notable performance, we argue that they may compromise the ternary relationship among users, items, and bundles. This compromise can result in information loss, ultimately impacting the overall model performance. To address this gap, we develop a unified model for bundle recommendation, termed hypergraph-enhanced dual convolutional neural network (HED). Our approach is characterized by two key aspects. Firstly, we construct a complete hypergraph to capture interaction dynamics among users, items, and bundles. Secondly, we incorporate U-B interaction information to enhance the information representation derived from users and bundle embedding vectors. Extensive experimental results on the Youshu and Netease datasets have demonstrated that HED surpasses state-of-the-art baselines, proving its effectiveness. In addition, various ablation studies and sensitivity analyses revealed the working mechanism and proved our effectiveness. Codes and datasets are available at https://github.com/AAI-Lab/HED