Abstract:The human brain receives nutrients and oxygen through an intricate network of blood vessels. Pathology affecting small vessels, at the mesoscopic scale, represents a critical vulnerability within the cerebral blood supply and can lead to severe conditions, such as Cerebral Small Vessel Diseases. The advent of 7 Tesla MRI systems has enabled the acquisition of higher spatial resolution images, making it possible to visualise such vessels in the brain. However, the lack of publicly available annotated datasets has impeded the development of robust, machine learning-driven segmentation algorithms. To address this, the SMILE-UHURA challenge was organised. This challenge, held in conjunction with the ISBI 2023, in Cartagena de Indias, Colombia, aimed to provide a platform for researchers working on related topics. The SMILE-UHURA challenge addresses the gap in publicly available annotated datasets by providing an annotated dataset of Time-of-Flight angiography acquired with 7T MRI. This dataset was created through a combination of automated pre-segmentation and extensive manual refinement. In this manuscript, sixteen submitted methods and two baseline methods are compared both quantitatively and qualitatively on two different datasets: held-out test MRAs from the same dataset as the training data (with labels kept secret) and a separate 7T ToF MRA dataset where both input volumes and labels are kept secret. The results demonstrate that most of the submitted deep learning methods, trained on the provided training dataset, achieved reliable segmentation performance. Dice scores reached up to 0.838 $\pm$ 0.066 and 0.716 $\pm$ 0.125 on the respective datasets, with an average performance of up to 0.804 $\pm$ 0.15.
Abstract:Ocular Myasthenia Gravis (OMG) is a rare and challenging disease to detect in its early stages, but symptoms often first appear in the eye muscles, such as drooping eyelids and double vision. Ocular images can be used for early diagnosis by segmenting different regions, such as the sclera, iris, and pupil, which allows for the calculation of area ratios to support accurate medical assessments. However, no publicly available dataset and tools currently exist for this purpose. To address this, we propose a new topology and intersection-union constrained loss function (TIU loss) that improves performance using small training datasets. We conducted experiments on a public dataset consisting of 55 subjects and 2,197 images. Our proposed method outperformed two widely used loss functions across three deep learning networks, achieving a mean Dice score of 83.12% [82.47%, 83.81%] with a 95% bootstrap confidence interval. In a low-percentage training scenario (10% of the training data), our approach showed an 8.32% improvement in Dice score compared to the baseline. Additionally, we evaluated the method in a clinical setting with 47 subjects and 501 images, achieving a Dice score of 64.44% [63.22%, 65.62%]. We did observe some bias when applying the model in clinical settings. These results demonstrate that the proposed method is accurate, and our code along with the trained model is publicly available.
Abstract:As the prevalence of mental health challenges, social media has emerged as a key platform for individuals to express their emotions.Deep learning tends to be a promising solution for analyzing mental health on social media. However, black box models are often inflexible when switching between tasks, and their results typically lack explanations. With the rise of large language models (LLMs), their flexibility has introduced new approaches to the field. Also due to the generative nature, they can be prompted to explain decision-making processes. However, their performance on complex psychological analysis still lags behind deep learning. In this paper, we introduce the first multi-task Chinese Social Media Interpretable Mental Health Instructions (C-IMHI) dataset, consisting of 9K samples, which has been quality-controlled and manually validated. We also propose MentalGLM series models, the first open-source LLMs designed for explainable mental health analysis targeting Chinese social media, trained on a corpus of 50K instructions. The proposed models were evaluated on three downstream tasks and achieved better or comparable performance compared to deep learning models, generalized LLMs, and task fine-tuned LLMs. We validated a portion of the generated decision explanations with experts, showing promising results. We also evaluated the proposed models on a clinical dataset, where they outperformed other LLMs, indicating their potential applicability in the clinical field. Our models show strong performance, validated across tasks and perspectives. The decision explanations enhance usability and facilitate better understanding and practical application of the models. Both the constructed dataset and the models are publicly available via: https://github.com/zwzzzQAQ/MentalGLM.
Abstract:Suicide is a pressing global issue, demanding urgent and effective preventive interventions. Among the various strategies in place, psychological support hotlines had proved as a potent intervention method. Approximately two million people in China attempt suicide annually, with many individuals making multiple attempts. Prompt identification and intervention for high-risk individuals are crucial to preventing tragedies. With the rapid advancement of artificial intelligence (AI), especially the development of large-scale language models (LLMs), new technological tools have been introduced to the field of mental health. This study included 1284 subjects, and was designed to validate whether deep learning models and LLMs, using audio and transcribed text from support hotlines, can effectively predict suicide risk. We proposed a simple LLM-based pipeline that first summarizes transcribed text from approximately one hour of speech to extract key features, and then predict suicidial bahaviours in the future. We compared our LLM-based method with the traditional manual scale approach in a clinical setting and with five advanced deep learning models. Surprisingly, the proposed simple LLM pipeline achieved strong performance on a test set of 46 subjects, with an F1 score of 76\% when combined with manual scale rating. This is 7\% higher than the best speech-based deep learning models and represents a 27.82\% point improvement in F1 score compared to using the manual scale apporach alone. Our study explores new applications of LLMs and demonstrates their potential for future use in suicide prevention efforts.
Abstract:Psychological support hotlines are an effective suicide prevention measure that typically relies on professionals using suicide risk assessment scales to predict individual risk scores. However, the accuracy of scale-based predictive methods for suicide risk assessment can vary widely depending on the expertise of the operator. This limitation underscores the need for more reliable methods, prompting this research's innovative exploration of the use of artificial intelligence to improve the accuracy and efficiency of suicide risk prediction within the context of psychological support hotlines. The study included data from 1,549 subjects from 2015-2017 in China who contacted a psychological support hotline. Each participant was followed for 12 months to identify instances of suicidal behavior. We proposed a novel multi-task learning method that uses the large-scale pre-trained model Whisper for feature extraction and fits psychological scales while predicting the risk of suicide. The proposed method yields a 2.4\% points improvement in F1-score compared to the traditional manual approach based on the psychological scales. Our model demonstrated superior performance compared to the other eight popular models. To our knowledge, this study is the first to apply deep learning to long-term speech data to predict suicide risk in China, indicating grate potential for clinical applications. The source code is publicly available at: \url{https://github.com/songchangwei/Suicide-Risk-Prediction}.
Abstract:Cognitive Behavioral Therapy (CBT) is a well-established intervention for mitigating psychological issues by modifying maladaptive cognitive and behavioral patterns. However, delivery of CBT is often constrained by resource limitations and barriers to access. Advancements in artificial intelligence (AI) have provided technical support for the digital transformation of CBT. Particularly, the emergence of pre-training models (PTMs) and large language models (LLMs) holds immense potential to support, augment, optimize and automate CBT delivery. This paper reviews the literature on integrating AI into CBT interventions. We begin with an overview of CBT. Then, we introduce the integration of AI into CBT across various stages: pre-treatment, therapeutic process, and post-treatment. Next, we summarized the datasets relevant to some CBT-related tasks. Finally, we discuss the benefits and current limitations of applying AI to CBT. We suggest key areas for future research, highlighting the need for further exploration and validation of the long-term efficacy and clinical utility of AI-enhanced CBT. The transformative potential of AI in reshaping the practice of CBT heralds a new era of more accessible, efficient, and personalized mental health interventions.
Abstract:Acute intracerebral hemorrhage is a life-threatening condition that demands immediate medical intervention. Intraparenchymal hemorrhage (IPH) and intraventricular hemorrhage (IVH) are critical subtypes of this condition. Clinically, when such hemorrhages are suspected, immediate CT scanning is essential to assess the extent of the bleeding and to facilitate the formulation of a targeted treatment plan. While current research in deep learning has largely focused on qualitative analyses, such as identifying subtypes of cerebral hemorrhages, there remains a significant gap in quantitative analysis crucial for enhancing clinical treatments. Addressing this gap, our paper introduces a dataset comprising 222 CT annotations, sourced from the RSNA 2019 Brain CT Hemorrhage Challenge and meticulously annotated at the voxel level for precise IPH and IVH segmentation. This dataset was utilized to train and evaluate seven advanced medical image segmentation algorithms, with the goal of refining the accuracy of segmentation for these hemorrhages. Our findings demonstrate that this dataset not only furthers the development of sophisticated segmentation algorithms but also substantially aids scientific research and clinical practice by improving the diagnosis and management of these severe hemorrhages. Our dataset and codes are available at \url{https://github.com/songchangwei/3DCT-SD-IVH-ICH}.
Abstract:Suicide and suicidal behaviors remain significant challenges for public policy and healthcare. In response, psychological support hotlines have been established worldwide to provide immediate help to individuals in mental crises. The effectiveness of these hotlines largely depends on accurately identifying callers' emotional states, particularly underlying negative emotions indicative of increased suicide risk. However, the high demand for psychological interventions often results in a shortage of professional operators, highlighting the need for an effective speech emotion recognition model. This model would automatically detect and analyze callers' emotions, facilitating integration into hotline services. Additionally, it would enable large-scale data analysis of psychological support hotline interactions to explore psychological phenomena and behaviors across populations. Our study utilizes data from the Beijing psychological support hotline, the largest suicide hotline in China. We analyzed speech data from 105 callers containing 20,630 segments and categorized them into 11 types of negative emotions. We developed a negative emotion recognition model and a fine-grained multi-label classification model using a large-scale pre-trained model. Our experiments indicate that the negative emotion recognition model achieves a maximum F1-score of 76.96%. However, it shows limited efficacy in the fine-grained multi-label classification task, with the best model achieving only a 41.74% weighted F1-score. We conducted an error analysis for this task, discussed potential future improvements, and considered the clinical application possibilities of our study. All the codes are public available.
Abstract:In the social media, users frequently express personal emotions, a subset of which may indicate potential suicidal tendencies. The implicit and varied forms of expression in internet language complicate accurate and rapid identification of suicidal intent on social media, thus creating challenges for timely intervention efforts. The development of deep learning models for suicide risk detection is a promising solution, but there is a notable lack of relevant datasets, especially in the Chinese context. To address this gap, this study presents a Chinese social media dataset designed for fine-grained suicide risk classification, focusing on indicators such as expressions of suicide intent, methods of suicide, and urgency of timing. Seven pre-trained models were evaluated in two tasks: high and low suicide risk, and fine-grained suicide risk classification on a level of 0 to 10. In our experiments, deep learning models show good performance in distinguishing between high and low suicide risk, with the best model achieving an F1 score of 88.39%. However, the results for fine-grained suicide risk classification were still unsatisfactory, with an weighted F1 score of 50.89%. To address the issues of data imbalance and limited dataset size, we investigated both traditional and advanced, large language model based data augmentation techniques, demonstrating that data augmentation can enhance model performance by up to 4.65% points in F1-score. Notably, the Chinese MentalBERT model, which was pre-trained on psychological domain data, shows superior performance in both tasks. This study provides valuable insights for automatic identification of suicidal individuals, facilitating timely psychological intervention on social media platforms. The source code and data are publicly available.
Abstract:Cognitive Behavioral Therapy (CBT) is an effective technique for addressing the irrational thoughts stemming from mental illnesses, but it necessitates precise identification of cognitive pathways to be successfully implemented in patient care. In current society, individuals frequently express negative emotions on social media on specific topics, often exhibiting cognitive distortions, including suicidal behaviors in extreme cases. Yet, there is a notable absence of methodologies for analyzing cognitive pathways that could aid psychotherapists in conducting effective interventions online. In this study, we gathered data from social media and established the task of extracting cognitive pathways, annotating the data based on a cognitive theoretical framework. We initially categorized the task of extracting cognitive pathways as a hierarchical text classification with four main categories and nineteen subcategories. Following this, we structured a text summarization task to help psychotherapists quickly grasp the essential information. Our experiments evaluate the performance of deep learning and large language models (LLMs) on these tasks. The results demonstrate that our deep learning method achieved a micro-F1 score of 62.34% in the hierarchical text classification task. Meanwhile, in the text summarization task, GPT-4 attained a Rouge-1 score of 54.92 and a Rouge-2 score of 30.86, surpassing the experimental deep learning model's performance. However, it may suffer from an issue of hallucination. We have made all models and codes publicly available to support further research in this field.