Abstract:How objective and unbiased are we while making decisions? This work investigates cognitive bias identification in high-stake decision making process by human experts, questioning its effectiveness in real-world settings, such as candidates assessments for university admission. We begin with a statistical analysis assessing correlations among different decision points among in the current process, which discovers discrepancies that imply cognitive bias and inconsistency in decisions. This motivates our exploration of bias-aware AI-augmented workflow that surpass human judgment. We propose BGM-HAN, an enhanced Hierarchical Attention Network with Byte-Pair Encoding, Gated Residual Connections and Multi-Head Attention. Using it as a backbone model, we further propose a Shortlist-Analyse-Recommend (SAR) agentic workflow, which simulate real-world decision-making. In our experiments, both the proposed model and the agentic workflow significantly improves on both human judgment and alternative models, validated with real-world data.
Abstract:The widespread presence of hate speech on the internet, including formats such as text-based tweets and vision-language memes, poses a significant challenge to digital platform safety. Recent research has developed detection models tailored to specific modalities; however, there is a notable gap in transferring detection capabilities across different formats. This study conducts extensive experiments using few-shot in-context learning with large language models to explore the transferability of hate speech detection between modalities. Our findings demonstrate that text-based hate speech examples can significantly enhance the classification accuracy of vision-language hate speech. Moreover, text-based demonstrations outperform vision-language demonstrations in few-shot learning settings. These results highlight the effectiveness of cross-modality knowledge transfer and offer valuable insights for improving hate speech detection systems.
Abstract:The abilities of long-context language models (LMs) are often evaluated using the "Needle-in-a-Haystack" (NIAH) test, which comprises tasks designed to assess a model's ability to identify specific information ("needle") within large text sequences ("haystack"). While these benchmarks measure how well models understand long-context input sequences, they do not effectively gauge the quality of long-form text generation--a critical aspect for applications such as design proposals and creative writing. To address this gap, we have introduced a new long-form text evaluation benchmark, LongGenbench, which tests models' ability to identify specific events within generated long text sequences. In this benchmark, we prompt long-context LMs to create long-form text that must include particular events or constraints and evaluate their ability to incorporate these elements. We evaluated ten long-context LMs across four distinct scenarios, three types of prompt instructions, and two different generation-length settings (16K and 32K). Although these models perform well on NIAH benchmarks, none demonstrated satisfactory performance on the LongGenbench, raising concerns about their ability to generate coherent long-form text that follows instructions. Additionally, as the length of the generated text increases, all models exhibit a significant drop in performance.
Abstract:The abilities of long-context language models (LMs) are often evaluated using the "Needle-in-a-Haystack" (NIAH) test, which comprises tasks designed to assess a model's ability to identify specific information ("needle") within large text sequences ("haystack"). While these benchmarks measure how well models understand long-context input sequences, they do not effectively gauge the quality of long-form text generation--a critical aspect for applications such as design proposals and creative writing. To address this gap, we have introduced a new long-form text evaluation benchmark, Spinning the Golden Thread (SGT), which tests models' ability to identify specific events within generated long text sequences. In this benchmark, we prompt long-context LMs to create long-form text that must include particular events or constraints and evaluate their ability to incorporate these elements. We evaluated ten long-context LMs across four distinct scenarios, three types of prompt instructions, and two different generation-length settings (16K and 32K). Although these models perform well on NIAH benchmarks, none demonstrated satisfactory performance on the Spinning the Golden Thread, raising concerns about their ability to generate coherent long-form text that follows instructions. Additionally, as the length of the generated text increases, all models exhibit a significant drop in performance.
Abstract:Hate speech is a pressing issue in modern society, with significant effects both online and offline. Recent research in hate speech detection has primarily centered on text-based media, largely overlooking multimodal content such as videos. Existing studies on hateful video datasets have predominantly focused on English content within a Western context and have been limited to binary labels (hateful or non-hateful), lacking detailed contextual information. This study presents MultiHateClip1 , an novel multilingual dataset created through hate lexicons and human annotation. It aims to enhance the detection of hateful videos on platforms such as YouTube and Bilibili, including content in both English and Chinese languages. Comprising 2,000 videos annotated for hatefulness, offensiveness, and normalcy, this dataset provides a cross-cultural perspective on gender-based hate speech. Through a detailed examination of human annotation results, we discuss the differences between Chinese and English hateful videos and underscore the importance of different modalities in hateful and offensive video analysis. Evaluations of state-of-the-art video classification models, such as VLM, GPT-4V and Qwen-VL, on MultiHateClip highlight the existing challenges in accurately distinguishing between hateful and offensive content and the urgent need for models that are both multimodally and culturally nuanced. MultiHateClip represents a foundational advance in enhancing hateful video detection by underscoring the necessity of a multimodal and culturally sensitive approach in combating online hate speech.
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities in executing tasks based on natural language queries. However, these models, trained on curated datasets, inherently embody biases ranging from racial to national and gender biases. It remains uncertain whether these biases impact the performance of LLMs for certain tasks. In this study, we investigate the political biases of LLMs within the stance classification task, specifically examining whether these models exhibit a tendency to more accurately classify politically-charged stances. Utilizing three datasets, seven LLMs, and four distinct prompting schemes, we analyze the performance of LLMs on politically oriented statements and targets. Our findings reveal a statistically significant difference in the performance of LLMs across various politically oriented stance classification tasks. Furthermore, we observe that this difference primarily manifests at the dataset level, with models and prompting schemes showing statistically similar performances across different stance classification datasets. Lastly, we observe that when there is greater ambiguity in the target the statement is directed towards, LLMs have poorer stance classification accuracy. Code & Dataset: http://doi.org/10.5281/zenodo.12938478
Abstract:Large Language Models (LLMs) have demonstrated remarkable proficiency in a wide range of NLP tasks. However, when it comes to authorship verification (AV) tasks, which involve determining whether two given texts share the same authorship, even advanced models like ChatGPT exhibit notable limitations. This paper introduces a novel approach, termed InstructAV, for authorship verification. This approach utilizes LLMs in conjunction with a parameter-efficient fine-tuning (PEFT) method to simultaneously improve accuracy and explainability. The distinctiveness of InstructAV lies in its ability to align classification decisions with transparent and understandable explanations, representing a significant progression in the field of authorship verification. Through comprehensive experiments conducted across various datasets, InstructAV demonstrates its state-of-the-art performance on the AV task, offering high classification accuracy coupled with enhanced explanation reliability.
Abstract:Large language models (LLMs) have demonstrated impressive reasoning capabilities, particularly in textual mathematical problem-solving. However, existing open-source image instruction fine-tuning datasets, containing limited question-answer pairs per image, do not fully exploit visual information to enhance the multimodal mathematical reasoning capabilities of Multimodal LLMs (MLLMs). To bridge this gap, we address the lack of high-quality, diverse multimodal mathematical datasets by collecting 40K high-quality images with question-answer pairs from 24 existing datasets and synthesizing 320K new pairs, creating the MathV360K dataset, which enhances both the breadth and depth of multimodal mathematical questions. We introduce Math-LLaVA, a LLaVA-1.5-based model fine-tuned with MathV360K. This novel approach significantly improves the multimodal mathematical reasoning capabilities of LLaVA-1.5, achieving a 19-point increase and comparable performance to GPT-4V on MathVista's minitest split. Furthermore, Math-LLaVA demonstrates enhanced generalizability, showing substantial improvements on the MMMU benchmark. Our research highlights the importance of dataset diversity and synthesis in advancing MLLMs' mathematical reasoning abilities. The code and data are available at: \url{https://github.com/HZQ950419/Math-LLaVA}.
Abstract:To address the limitations of current hate speech detection models, we introduce \textsf{SGHateCheck}, a novel framework designed for the linguistic and cultural context of Singapore and Southeast Asia. It extends the functional testing approach of HateCheck and MHC, employing large language models for translation and paraphrasing into Singapore's main languages, and refining these with native annotators. \textsf{SGHateCheck} reveals critical flaws in state-of-the-art models, highlighting their inadequacy in sensitive content moderation. This work aims to foster the development of more effective hate speech detection tools for diverse linguistic environments, particularly for Singapore and Southeast Asia contexts.
Abstract:This paper introduces a new in-context learning (ICL) mechanism called In-Image Learning (I$^2$L) that combines demonstration examples, visual cues, and instructions into a single image to enhance the capabilities of GPT-4V. Unlike previous approaches that rely on converting images to text or incorporating visual input into language models, I$^2$L consolidates all information into one image and primarily leverages image processing, understanding, and reasoning abilities. This has several advantages: it avoids inaccurate textual descriptions of complex images, provides flexibility in positioning demonstration examples, reduces the input burden, and avoids exceeding input limits by eliminating the need for multiple images and lengthy text. To further combine the strengths of different ICL methods, we introduce an automatic strategy to select the appropriate ICL method for a data example in a given task. We conducted experiments on MathVista and Hallusionbench to test the effectiveness of I$^2$L in complex multimodal reasoning tasks and mitigating language hallucination and visual illusion. Additionally, we explored the impact of image resolution, the number of demonstration examples, and their positions on the effectiveness of I$^2$L. Our code is publicly available at https://github.com/AGI-Edgerunners/IIL.