Abstract:Fairness in both machine learning (ML) predictions and human decisions is critical, with ML models prone to algorithmic and data bias, and human decisions affected by subjectivity and cognitive bias. This study investigates fairness using a real-world university admission dataset with 870 profiles, leveraging three ML models, namely XGB, Bi-LSTM, and KNN. Textual features are encoded with BERT embeddings. For individual fairness, we assess decision consistency among experts with varied backgrounds and ML models, using a consistency score. Results show ML models outperform humans in fairness by 14.08% to 18.79%. For group fairness, we propose a gender-debiasing pipeline and demonstrate its efficacy in removing gender-specific language without compromising prediction performance. Post-debiasing, all models maintain or improve their classification accuracy, validating the hypothesis that fairness and performance can coexist. Our findings highlight ML's potential to enhance fairness in admissions while maintaining high accuracy, advocating a hybrid approach combining human judgement and ML models.
Abstract:LLM-based autonomous agents have demonstrated outstanding performance in solving complex industrial tasks. However, in the pursuit of carbon neutrality and high-performance renewable energy systems, existing AI-assisted design automation faces significant limitations in explainability, scalability, and usability. To address these challenges, we propose LP-COMDA, an LLM-based, physics-informed autonomous agent that automates the modulation design of power converters in Power Electronics Systems with minimal human supervision. Unlike traditional AI-assisted approaches, LP-COMDA contains an LLM-based planner that gathers and validates design specifications through a user-friendly chat interface. The planner then coordinates with physics-informed design and optimization tools to iteratively generate and refine modulation designs autonomously. Through the chat interface, LP-COMDA provides an explainable design process, presenting explanations and charts. Experiments show that LP-COMDA outperforms all baseline methods, achieving a 63.2% reduction in error compared to the second-best benchmark method in terms of standard mean absolute error. Furthermore, empirical studies with 20 experts conclude that design time with LP-COMDA is over 33 times faster than conventional methods, showing its significant improvement on design efficiency over the current processes.
Abstract:Generating large-scale, domain-specific, multilingual multi-turn dialogue datasets remains a significant hurdle for training effective Multi-Turn Intent Classification models in chatbot systems. In this paper, we introduce Chain-of-Intent, a novel mechanism that combines Hidden Markov Models with Large Language Models (LLMs) to generate contextually aware, intent-driven conversations through self-play. By extracting domain-specific knowledge from e-commerce chat logs, we estimate conversation turns and intent transitions, which guide the generation of coherent dialogues. Leveraging LLMs to enhance emission probabilities, our approach produces natural and contextually consistent questions and answers. We also propose MINT-CL, a framework for multi-turn intent classification using multi-task contrastive learning, improving classification accuracy without the need for extensive annotated data. Evaluations show that our methods outperform baselines in dialogue quality and intent classification accuracy, especially in multilingual settings, while significantly reducing data generation efforts. Furthermore, we release MINT-E, a multilingual, intent-aware multi-turn e-commerce dialogue corpus to support future research in this area.
Abstract:Accurate multi-turn intent classification is essential for advancing conversational AI systems. However, challenges such as the scarcity of comprehensive datasets and the complexity of contextual dependencies across dialogue turns hinder progress. This paper presents two novel approaches leveraging Large Language Models (LLMs) to enhance scalability and reduce latency in production dialogue systems. First, we introduce Symbol Tuning, which simplifies intent labels to reduce task complexity and improve performance in multi-turn dialogues. Second, we propose C-LARA (Consistency-aware, Linguistics Adaptive Retrieval Augmentation), a framework that employs LLMs for data augmentation and pseudo-labeling to generate synthetic multi-turn dialogues. These enriched datasets are used to fine-tune a small, efficient model suitable for deployment. Experiments conducted on multilingual dialogue datasets demonstrate significant improvements in classification accuracy and resource efficiency. Our methods enhance multi-turn intent classification accuracy by 5.09%, reduce annotation costs by 40%, and enable scalable deployment in low-resource multilingual industrial systems, highlighting their practicality and impact.
Abstract:How objective and unbiased are we while making decisions? This work investigates cognitive bias identification in high-stake decision making process by human experts, questioning its effectiveness in real-world settings, such as candidates assessments for university admission. We begin with a statistical analysis assessing correlations among different decision points among in the current process, which discovers discrepancies that imply cognitive bias and inconsistency in decisions. This motivates our exploration of bias-aware AI-augmented workflow that surpass human judgment. We propose BGM-HAN, an enhanced Hierarchical Attention Network with Byte-Pair Encoding, Gated Residual Connections and Multi-Head Attention. Using it as a backbone model, we further propose a Shortlist-Analyse-Recommend (SAR) agentic workflow, which simulate real-world decision-making. In our experiments, both the proposed model and the agentic workflow significantly improves on both human judgment and alternative models, validated with real-world data.
Abstract:Multilingual Large Language Models (MLLMs) represent a pivotal advancement in democratizing artificial intelligence across linguistic boundaries. While theoretical foundations are well-established, practical implementation guidelines remain scattered. This work bridges this gap by providing a comprehensive end-to-end framework for developing and deploying MLLMs in production environments. We make three distinctive contributions: First, we present an actionable pipeline from data pre-processing through deployment, integrating insights from academic research and industrial applications. Second, using Llama2 as a case study, we provide detailed optimization strategies for enhancing multilingual capabilities, including curriculum learning approaches for balancing high-resource and low-resource languages, tokenization strategies, and effective sampling methods. Third, we offer an interdisciplinary analysis that considers technical, linguistic, and cultural perspectives in MLLM development. Our findings reveal critical challenges in supporting linguistic diversity, with 88.38% of world languages categorized as low-resource, affecting over a billion speakers. We examine practical solutions through real-world applications in customer service, search engines, and machine translation. By synthesizing theoretical frameworks with production-ready implementation strategies, this survey provides essential guidance for practitioners and researchers working to develop more inclusive and effective multilingual AI systems.
Abstract:Large language models (LLMs) have demonstrated impressive reasoning capabilities, particularly in textual mathematical problem-solving. However, existing open-source image instruction fine-tuning datasets, containing limited question-answer pairs per image, do not fully exploit visual information to enhance the multimodal mathematical reasoning capabilities of Multimodal LLMs (MLLMs). To bridge this gap, we address the lack of high-quality, diverse multimodal mathematical datasets by collecting 40K high-quality images with question-answer pairs from 24 existing datasets and synthesizing 320K new pairs, creating the MathV360K dataset, which enhances both the breadth and depth of multimodal mathematical questions. We introduce Math-LLaVA, a LLaVA-1.5-based model fine-tuned with MathV360K. This novel approach significantly improves the multimodal mathematical reasoning capabilities of LLaVA-1.5, achieving a 19-point increase and comparable performance to GPT-4V on MathVista's minitest split. Furthermore, Math-LLaVA demonstrates enhanced generalizability, showing substantial improvements on the MMMU benchmark. Our research highlights the importance of dataset diversity and synthesis in advancing MLLMs' mathematical reasoning abilities. The code and data are available at: \url{https://github.com/HZQ950419/Math-LLaVA}.
Abstract:We introduce a novel, multimodal large-scale scene reconstruction benchmark that utilizes newly developed 3D representation approaches: Gaussian Splatting and Neural Radiance Fields (NeRF). Our expansive U-Scene dataset surpasses any previously existing real large-scale outdoor LiDAR and image dataset in both area and point count. GauU-Scene encompasses over 6.5 square kilometers and features a comprehensive RGB dataset coupled with LiDAR ground truth. Additionally, we are the first to propose a LiDAR and image alignment method for a drone-based dataset. Our assessment of GauU-Scene includes a detailed analysis across various novel viewpoints, employing image-based metrics such as SSIM, LPIPS, and PSNR on NeRF and Gaussian Splatting based methods. This analysis reveals contradictory results when applying geometric-based metrics like Chamfer distance. The experimental results on our multimodal dataset highlight the unreliability of current image-based metrics and reveal significant drawbacks in geometric reconstruction using the current Gaussian Splatting-based method, further illustrating the necessity of our dataset for assessing geometry reconstruction tasks. We also provide detailed supplementary information on data collection protocols and make the dataset available on the following anonymous project page
Abstract:Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.
Abstract:Itinerary recommendation is a complex sequence prediction problem with numerous real-world applications. This task becomes even more challenging when considering the optimization of multiple user queuing times and crowd levels, as well as numerous involved parameters, such as attraction popularity, queuing time, walking time, and operating hours. Existing solutions typically focus on single-person perspectives and fail to address real-world issues resulting from natural crowd behavior, like the Selfish Routing problem. In this paper, we introduce the Strategic and Crowd-Aware Itinerary Recommendation (SCAIR) algorithm, which optimizes group utility in real-world settings. We model the route recommendation strategy as a Markov Decision Process and propose a State Encoding mechanism that enables real-time planning and allocation in linear time. We evaluate our algorithm against various competitive and realistic baselines using a theme park dataset, demonstrating that SCAIR outperforms these baselines in addressing the Selfish Routing problem across four theme parks.