Abstract:Generating large-scale, domain-specific, multilingual multi-turn dialogue datasets remains a significant hurdle for training effective Multi-Turn Intent Classification models in chatbot systems. In this paper, we introduce Chain-of-Intent, a novel mechanism that combines Hidden Markov Models with Large Language Models (LLMs) to generate contextually aware, intent-driven conversations through self-play. By extracting domain-specific knowledge from e-commerce chat logs, we estimate conversation turns and intent transitions, which guide the generation of coherent dialogues. Leveraging LLMs to enhance emission probabilities, our approach produces natural and contextually consistent questions and answers. We also propose MINT-CL, a framework for multi-turn intent classification using multi-task contrastive learning, improving classification accuracy without the need for extensive annotated data. Evaluations show that our methods outperform baselines in dialogue quality and intent classification accuracy, especially in multilingual settings, while significantly reducing data generation efforts. Furthermore, we release MINT-E, a multilingual, intent-aware multi-turn e-commerce dialogue corpus to support future research in this area.
Abstract:Accurate multi-turn intent classification is essential for advancing conversational AI systems. However, challenges such as the scarcity of comprehensive datasets and the complexity of contextual dependencies across dialogue turns hinder progress. This paper presents two novel approaches leveraging Large Language Models (LLMs) to enhance scalability and reduce latency in production dialogue systems. First, we introduce Symbol Tuning, which simplifies intent labels to reduce task complexity and improve performance in multi-turn dialogues. Second, we propose C-LARA (Consistency-aware, Linguistics Adaptive Retrieval Augmentation), a framework that employs LLMs for data augmentation and pseudo-labeling to generate synthetic multi-turn dialogues. These enriched datasets are used to fine-tune a small, efficient model suitable for deployment. Experiments conducted on multilingual dialogue datasets demonstrate significant improvements in classification accuracy and resource efficiency. Our methods enhance multi-turn intent classification accuracy by 5.09%, reduce annotation costs by 40%, and enable scalable deployment in low-resource multilingual industrial systems, highlighting their practicality and impact.