Abstract:AlayaDB is a cutting-edge vector database system natively architected for efficient and effective long-context inference for Large Language Models (LLMs) at AlayaDB AI. Specifically, it decouples the KV cache and attention computation from the LLM inference systems, and encapsulates them into a novel vector database system. For the Model as a Service providers (MaaS), AlayaDB consumes fewer hardware resources and offers higher generation quality for various workloads with different kinds of Service Level Objectives (SLOs), when comparing with the existing alternative solutions (e.g., KV cache disaggregation, retrieval-based sparse attention). The crux of AlayaDB is that it abstracts the attention computation and cache management for LLM inference into a query processing procedure, and optimizes the performance via a native query optimizer. In this work, we demonstrate the effectiveness of AlayaDB via (i) three use cases from our industry partners, and (ii) extensive experimental results on LLM inference benchmarks.
Abstract:In recent years, Deep Neural Networks (DNN) have emerged as a practical method for image recognition. The raw data, which contain sensitive information, are generally exploited within the training process. However, when the training process is outsourced to a third-party organization, the raw data should be desensitized before being transferred to protect sensitive information. Although masks are widely applied to hide important sensitive information, preventing inpainting masked images is critical, which may restore the sensitive information. The corresponding models should be adjusted for the masked images to reduce the degradation of the performance for recognition or classification tasks due to the desensitization of images. In this paper, we propose a mask-based image desensitization approach while supporting recognition. This approach consists of a mask generation algorithm and a model adjustment method. We propose exploiting an interpretation algorithm to maintain critical information for the recognition task in the mask generation algorithm. In addition, we propose a feature selection masknet as the model adjustment method to improve the performance based on the masked images. Extensive experimentation results based on multiple image datasets reveal significant advantages (up to 9.34% in terms of accuracy) of our approach for image desensitization while supporting recognition.