Abstract:While recent years have witnessed the advancement in big data and Artificial Intelligence (AI), it is of much importance to safeguard data privacy and security. As an innovative approach, Federated Learning (FL) addresses these concerns by facilitating collaborative model training across distributed data sources without transferring raw data. However, the challenges of robust security and privacy across decentralized networks catch significant attention in dealing with the distributed data in FL. In this paper, we conduct an extensive survey of the security and privacy issues prevalent in FL, underscoring the vulnerability of communication links and the potential for cyber threats. We delve into various defensive strategies to mitigate these risks, explore the applications of FL across different sectors, and propose research directions. We identify the intricate security challenges that arise within the FL frameworks, aiming to contribute to the development of secure and efficient FL systems.
Abstract:Despite achieving remarkable performance, Federated Learning (FL) encounters two important problems, i.e., low training efficiency and limited computational resources. In this paper, we propose a new FL framework, i.e., FedDUMAP, with three original contributions, to leverage the shared insensitive data on the server in addition to the distributed data in edge devices so as to efficiently train a global model. First, we propose a simple dynamic server update algorithm, which takes advantage of the shared insensitive data on the server while dynamically adjusting the update steps on the server in order to speed up the convergence and improve the accuracy. Second, we propose an adaptive optimization method with the dynamic server update algorithm to exploit the global momentum on the server and each local device for superior accuracy. Third, we develop a layer-adaptive model pruning method to carry out specific pruning operations, which is adapted to the diverse features of each layer so as to attain an excellent trade-off between effectiveness and efficiency. Our proposed FL model, FedDUMAP, combines the three original techniques and has a significantly better performance compared with baseline approaches in terms of efficiency (up to 16.9 times faster), accuracy (up to 20.4% higher), and computational cost (up to 62.6% smaller).
Abstract:While centralized servers pose a risk of being a single point of failure, decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities. Merging distributed computing with cryptographic techniques, decentralized technologies introduce a novel computing paradigm. Blockchain ensures secure, transparent, and tamper-proof data management by validating and recording transactions via consensus across network nodes. Federated Learning (FL), as a distributed machine learning framework, enables participants to collaboratively train models while safeguarding data privacy by avoiding direct raw data exchange. Despite the growing interest in decentralized methods, their application in FL remains underexplored. This paper presents a thorough investigation into Blockchain-based FL (BCFL), spotlighting the synergy between blockchain's security features and FL's privacy-preserving model training capabilities. First, we present the taxonomy of BCFL from three aspects, including decentralized, separate networks, and reputation-based architectures. Then, we summarize the general architecture of BCFL systems, providing a comprehensive perspective on FL architectures informed by blockchain. Afterward, we analyze the application of BCFL in healthcare, IoT, and other privacy-sensitive areas. Finally, we identify future research directions of BCFL.
Abstract:While data is distributed in multiple edge devices, Federated Learning (FL) is attracting more and more attention to collaboratively train a machine learning model without transferring raw data. FL generally exploits a parameter server and a large number of edge devices during the whole process of the model training, while several devices are selected in each round. However, straggler devices may slow down the training process or even make the system crash during training. Meanwhile, other idle edge devices remain unused. As the bandwidth between the devices and the server is relatively low, the communication of intermediate data becomes a bottleneck. In this paper, we propose Time-Efficient Asynchronous federated learning with Sparsification and Quantization, i.e., TEASQ-Fed. TEASQ-Fed can fully exploit edge devices to asynchronously participate in the training process by actively applying for tasks. We utilize control parameters to choose an appropriate number of parallel edge devices, which simultaneously execute the training tasks. In addition, we introduce a caching mechanism and weighted averaging with respect to model staleness to further improve the accuracy. Furthermore, we propose a sparsification and quantitation approach to compress the intermediate data to accelerate the training. The experimental results reveal that TEASQ-Fed improves the accuracy (up to 16.67% higher) while accelerating the convergence of model training (up to twice faster).
Abstract:Proactively and naturally guiding the dialog from the non-recommendation context (e.g., Chit-chat) to the recommendation scenario (e.g., Music) is crucial for the Conversational Recommender System (CRS). Prior studies mainly focus on planning the next dialog goal~(e.g., chat on a movie star) conditioned on the previous dialog. However, we find the dialog goals can be simultaneously observed at different levels, which can be utilized to improve CRS. In this paper, we propose Dual-space Hierarchical Learning (DHL) to leverage multi-level goal sequences and their hierarchical relationships for conversational recommendation. Specifically, we exploit multi-level goal sequences from both the representation space and the optimization space. In the representation space, we propose the hierarchical representation learning where a cross attention module derives mutually enhanced multi-level goal representations. In the optimization space, we devise the hierarchical weight learning to reweight lower-level goal sequences, and introduce bi-level optimization for stable update. Additionally, we propose a soft labeling strategy to guide optimization gradually. Experiments on two real-world datasets verify the effectiveness of our approach. Code and data are available here.
Abstract:Federated Learning (FL) has achieved significant achievements recently, enabling collaborative model training on distributed data over edge devices. Iterative gradient or model exchanges between devices and the centralized server in the standard FL paradigm suffer from severe efficiency bottlenecks on the server. While enabling collaborative training without a central server, existing decentralized FL approaches either focus on the synchronous mechanism that deteriorates FL convergence or ignore device staleness with an asynchronous mechanism, resulting in inferior FL accuracy. In this paper, we propose an Asynchronous Efficient Decentralized FL framework, i.e., AEDFL, in heterogeneous environments with three unique contributions. First, we propose an asynchronous FL system model with an efficient model aggregation method for improving the FL convergence. Second, we propose a dynamic staleness-aware model update approach to achieve superior accuracy. Third, we propose an adaptive sparse training method to reduce communication and computation costs without significant accuracy degradation. Extensive experimentation on four public datasets and four models demonstrates the strength of AEDFL in terms of accuracy (up to 16.3% higher), efficiency (up to 92.9% faster), and computation costs (up to 42.3% lower).
Abstract:In recent years, Deep Neural Networks (DNN) have emerged as a practical method for image recognition. The raw data, which contain sensitive information, are generally exploited within the training process. However, when the training process is outsourced to a third-party organization, the raw data should be desensitized before being transferred to protect sensitive information. Although masks are widely applied to hide important sensitive information, preventing inpainting masked images is critical, which may restore the sensitive information. The corresponding models should be adjusted for the masked images to reduce the degradation of the performance for recognition or classification tasks due to the desensitization of images. In this paper, we propose a mask-based image desensitization approach while supporting recognition. This approach consists of a mask generation algorithm and a model adjustment method. We propose exploiting an interpretation algorithm to maintain critical information for the recognition task in the mask generation algorithm. In addition, we propose a feature selection masknet as the model adjustment method to improve the performance based on the masked images. Extensive experimentation results based on multiple image datasets reveal significant advantages (up to 9.34% in terms of accuracy) of our approach for image desensitization while supporting recognition.
Abstract:Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data. However, the training process of Large Language Models (LLMs) generally incurs the update of significant parameters, which limits the applicability of FL techniques to tackle the LLMs in real scenarios. Prompt tuning can significantly reduce the number of parameters to update, but it either incurs performance degradation or low training efficiency. The straightforward utilization of prompt tuning in the FL often raises non-trivial communication costs and dramatically degrades performance. In addition, the decentralized data is generally non-Independent and Identically Distributed (non-IID), which brings client drift problems and thus poor performance. This paper proposes a Parameter-efficient prompt Tuning approach with Adaptive Optimization, i.e., FedPepTAO, to enable efficient and effective FL of LLMs. First, an efficient partial prompt tuning approach is proposed to improve performance and efficiency simultaneously. Second, a novel adaptive optimization method is developed to address the client drift problems on both the device and server sides to enhance performance further. Extensive experiments based on 10 datasets demonstrate the superb performance (up to 60.8\% in terms of accuracy) and efficiency (up to 97.59\% in terms of training time) of FedPepTAO compared with 9 baseline approaches. Our code is available at https://github.com/llm-eff/FedPepTAO.
Abstract:While self-supervised learning (SSL) algorithms have been widely used to pre-train deep models, few efforts [11] have been done to improve representation learning of X-ray image analysis with SSL pre-trained models. In this work, we study a novel self-supervised pre-training pipeline, namely Multi-task Self-super-vised Continual Learning (MUSCLE), for multiple medical imaging tasks, such as classification and segmentation, using X-ray images collected from multiple body parts, including heads, lungs, and bones. Specifically, MUSCLE aggregates X-rays collected from multiple body parts for MoCo-based representation learning, and adopts a well-designed continual learning (CL) procedure to further pre-train the backbone subject various X-ray analysis tasks jointly. Certain strategies for image pre-processing, learning schedules, and regularization have been used to solve data heterogeneity, overfitting, and catastrophic forgetting problems for multi-task/dataset learning in MUSCLE.We evaluate MUSCLE using 9 real-world X-ray datasets with various tasks, including pneumonia classification, skeletal abnormality classification, lung segmentation, and tuberculosis (TB) detection. Comparisons against other pre-trained models [7] confirm the proof-of-concept that self-supervised multi-task/dataset continual pre-training could boost the performance of X-ray image analysis.
Abstract:Making personalized recommendation for cold-start users, who only have a few interaction histories, is a challenging problem in recommendation systems. Recent works leverage hypernetworks to directly map user interaction histories to user-specific parameters, which are then used to modulate predictor by feature-wise linear modulation function. These works obtain the state-of-the-art performance. However, the physical meaning of scaling and shifting in recommendation data is unclear. Instead of using a fixed modulation function and deciding modulation position by expertise, we propose a modulation framework called ColdNAS for user cold-start problem, where we look for proper modulation structure, including function and position, via neural architecture search. We design a search space which covers broad models and theoretically prove that this search space can be transformed to a much smaller space, enabling an efficient and robust one-shot search algorithm. Extensive experimental results on benchmark datasets show that ColdNAS consistently performs the best. We observe that different modulation functions lead to the best performance on different datasets, which validates the necessity of designing a searching-based method.