Abstract:Regression-based blind image quality assessment (IQA) models are susceptible to biased training samples, leading to a biased estimation of model parameters. To mitigate this issue, we propose a regression-free framework for image quality evaluation, which is founded upon retrieving similar instances by incorporating semantic and distortion features. The motivation behind this approach is rooted in the observation that the human visual system (HVS) has analogous visual responses to semantically similar image contents degraded by the same distortion. The proposed framework comprises two classification-based modules: semantic-based classification (SC) module and distortion-based classification (DC) module. Given a test image and an IQA database, the SC module retrieves multiple pristine images based on semantic similarity. The DC module then retrieves instances based on distortion similarity from the distorted images that correspond to each retrieved pristine image. Finally, the predicted quality score is derived by aggregating the subjective quality scores of multiple retrieved instances. Experimental results on four benchmark databases validate that the proposed model can remarkably outperform the state-of-the-art regression-based models.
Abstract:Orbital angular momentum (OAM) at radio frequency (RF) provides a novel approach of multiplexing a set of orthogonal modes on the same frequency channel to achieve high spectral efficiencies (SEs). However, the existing research on OAM wireless communications is mainly focused on pointto-point transmission in the line-of-sight (LoS) scenario. In this paper, we propose an overall scheme of the downlink multi-user OAM (MU-OAM) wireless backhaul based on uniform circular arrays (UCAs) for broadcasting networks, which can achieve the joint spatial division and coaxial multiplexing (JSDCM). A salient feature of the proposed downlink MU-OAM wireless backhaul systems is that the channel matrices are completely characterized by the position of each small base station (SBS), independent of the numbers of subcarriers and antennas, which avoids estimating large channel matrices required by the traditional downlink multi-user multiple-input multiple-output (MU-MIMO) wireless backhaul systems. Thereafter, we propose an OAM-based multiuser distance and angle of arrival (AoA) estimation method, which is able to simultaneously estimate the positions of multiple SBSs with a flexible number of training symbols. With the estimated distances and AoAs, a MU-OAM preprocessing scheme is applied to eliminate the co-mode and inter-mode interferences in the downlink MU-OAM channel. At last, the proposed methods are extended to the downlink MU-OAM-MIMO wireless backhaul system equipped with uniform concentric circular arrays (UCCAs), for which much higher spectral efficiency (SE) and energy efficiency (EE) than traditional MU-MIMO systems can be achieved. Both mathematical analysis and simulation results validate that the proposed scheme can effectively eliminate both interferences of the practical downlink MU-OAM channel and approaches the performance of the ideal MU-OAM channel.
Abstract:In video-based dynamic point cloud compression (V-PCC), 3D point clouds are projected onto 2D images for compressing with the existing video codecs. However, the existing video codecs are originally designed for natural visual signals, and it fails to account for the characteristics of point clouds. Thus, there are still problems in the compression of geometry information generated from the point clouds. Firstly, the distortion model in the existing rate-distortion optimization (RDO) is not consistent with the geometry quality assessment metrics. Secondly, the prediction methods in video codecs fail to account for the fact that the highest depth values of a far layer is greater than or equal to the corresponding lowest depth values of a near layer. This paper proposes an advanced geometry surface coding (AGSC) method for dynamic point clouds (DPC) compression. The proposed method consists of two modules, including an error projection model-based (EPM-based) RDO and an occupancy map-based (OM-based) merge prediction. Firstly, the EPM model is proposed to describe the relationship between the distortion model in the existing video codec and the geometry quality metric. Secondly, the EPM-based RDO method is presented to project the existing distortion model on the plane normal and is simplified to estimate the average normal vectors of coding units (CUs). Finally, we propose the OM-based merge prediction approach, in which the prediction pixels of merge modes are refined based on the occupancy map. Experiments tested on the standard point clouds show that the proposed method achieves an average 9.84\% bitrate saving for geometry compression.
Abstract:Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data by performing clustering on the learned optimal embedding across views. Though demonstrating promising performance in various applications, most of existing methods usually linearly combine a group of pre-specified first-order Laplacian matrices to construct the optimal Laplacian matrix, which may result in limited representation capability and insufficient information exploitation. Also, storing and implementing complex operations on the $n\times n$ Laplacian matrices incurs intensive storage and computation complexity. To address these issues, this paper first proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix, and then extends it to the late fusion version for accurate and efficient multi-view clustering. Specifically, our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base Laplacian matrices simultaneously. By this way, the representative capacity of the learned optimal Laplacian matrix is enhanced, which is helpful to better utilize the hidden high-order connection information among data, leading to improved clustering performance. We design an efficient algorithm with proved convergence to solve the resultant optimization problem. Extensive experimental results on nine datasets demonstrate the superiority of our algorithm against state-of-the-art methods, which verifies the effectiveness and advantages of the proposed algorithm.
Abstract:Learning effective embedding has been proved to be useful in many real-world problems, such as recommender systems, search ranking and online advertisement. However, one of the challenges is data sparsity in learning large-scale item embedding, as users' historical behavior data are usually lacking or insufficient in an individual domain. In fact, user's behaviors from different domains regarding the same items are usually relevant. Therefore, we can learn complete user behaviors to alleviate the sparsity using complementary information from correlated domains. It is intuitive to model users' behaviors using graph, and graph neural networks (GNNs) have recently shown the great power for representation learning, which can be used to learn item embedding. However, it is challenging to transfer the information across domains and learn cross-domain representation using the existing GNNs. To address these challenges, in this paper, we propose a novel model - Deep Multi-Graph Embedding (DMGE) to learn cross-domain representation. Specifically, we first construct a multi-graph based on users' behaviors from different domains, and then propose a multi-graph neural network to learn cross-domain representation in an unsupervised manner. Particularly, we present a multiple-gradient descent optimizer for efficiently training the model. We evaluate our approach on various large-scale real-world datasets, and the experimental results show that DMGE outperforms other state-of-art embedding methods in various tasks.
Abstract:The extensive computational burden limits the usage of CNNs in mobile devices for dense estimation tasks. In this paper, we present a lightweight network to address this problem,namely LEDNet, which employs an asymmetric encoder-decoder architecture for the task of real-time semantic segmentation.More specifically, the encoder adopts a ResNet as backbone network, where two new operations, channel split and shuffle, are utilized in each residual block to greatly reduce computation cost while maintaining higher segmentation accuracy. On the other hand, an attention pyramid network (APN) is employed in the decoder to further lighten the entire network complexity. Our model has less than 1M parameters,and is able to run at over 71 FPS in a single GTX 1080Ti GPU. The comprehensive experiments demonstrate that our approach achieves state-of-the-art results in terms of speed and accuracy trade-off on CityScapes dataset.