Abstract:Scientific information extraction (SciIE) is critical for converting unstructured knowledge from scholarly articles into structured data (entities and relations). Several datasets have been proposed for training and validating SciIE models. However, due to the high complexity and cost of annotating scientific texts, those datasets restrict their annotations to specific parts of paper, such as abstracts, resulting in the loss of diverse entity mentions and relations in context. In this paper, we release a new entity and relation extraction dataset for entities related to datasets, methods, and tasks in scientific articles. Our dataset contains 106 manually annotated full-text scientific publications with over 24k entities and 12k relations. To capture the intricate use and interactions among entities in full texts, our dataset contains a fine-grained tag set for relations. Additionally, we provide an out-of-distribution test set to offer a more realistic evaluation. We conduct comprehensive experiments, including state-of-the-art supervised models and our proposed LLM-based baselines, and highlight the challenges presented by our dataset, encouraging the development of innovative models to further the field of SciIE.
Abstract:Flowcharts are graphical tools for representing complex concepts in concise visual representations. This paper introduces the FlowLearn dataset, a resource tailored to enhance the understanding of flowcharts. FlowLearn contains complex scientific flowcharts and simulated flowcharts. The scientific subset contains 3,858 flowcharts sourced from scientific literature and the simulated subset contains 10,000 flowcharts created using a customizable script. The dataset is enriched with annotations for visual components, OCR, Mermaid code representation, and VQA question-answer pairs. Despite the proven capabilities of Large Vision-Language Models (LVLMs) in various visual understanding tasks, their effectiveness in decoding flowcharts - a crucial element of scientific communication - has yet to be thoroughly investigated. The FlowLearn test set is crafted to assess the performance of LVLMs in flowchart comprehension. Our study thoroughly evaluates state-of-the-art LVLMs, identifying existing limitations and establishing a foundation for future enhancements in this relatively underexplored domain. For instance, in tasks involving simulated flowcharts, GPT-4V achieved the highest accuracy (58%) in counting the number of nodes, while Claude recorded the highest accuracy (83%) in OCR tasks. Notably, no single model excels in all tasks within the FlowLearn framework, highlighting significant opportunities for further development.
Abstract:We present SciDMT, an enhanced and expanded corpus for scientific mention detection, offering a significant advancement over existing related resources. SciDMT contains annotated scientific documents for datasets (D), methods (M), and tasks (T). The corpus consists of two components: 1) the SciDMT main corpus, which includes 48 thousand scientific articles with over 1.8 million weakly annotated mention annotations in the format of in-text span, and 2) an evaluation set, which comprises 100 scientific articles manually annotated for evaluation purposes. To the best of our knowledge, SciDMT is the largest corpus for scientific entity mention detection. The corpus's scale and diversity are instrumental in developing and refining models for tasks such as indexing scientific papers, enhancing information retrieval, and improving the accessibility of scientific knowledge. We demonstrate the corpus's utility through experiments with advanced deep learning architectures like SciBERT and GPT-3.5. Our findings establish performance baselines and highlight unresolved challenges in scientific mention detection. SciDMT serves as a robust benchmark for the research community, encouraging the development of innovative models to further the field of scientific information extraction.
Abstract:The computer-assisted radiologic informative report has received increasing research attention to facilitate diagnosis and treatment planning for dental care providers. However, manual interpretation of dental images is limited, expensive, and time-consuming. Another barrier in dental imaging is the limited number of available images for training, which is a challenge in the era of deep learning. This study proposes a novel self-distillation (SD) enhanced self-supervised learning on top of the masked image modeling (SimMIM) Transformer, called SD-SimMIM, to improve the outcome with a limited number of dental radiographs. In addition to the prediction loss on masked patches, SD-SimMIM computes the self-distillation loss on the visible patches. We apply SD-SimMIM on dental panoramic X-rays for teeth numbering, detection of dental restorations and orthodontic appliances, and instance segmentation tasks. Our results show that SD-SimMIM outperforms other self-supervised learning methods. Furthermore, we augment and improve the annotation of an existing dataset of panoramic X-rays.
Abstract:The recognition of dataset names is a critical task for automatic information extraction in scientific literature, enabling researchers to understand and identify research opportunities. However, existing corpora for dataset mention detection are limited in size and naming diversity. In this paper, we introduce the Dataset Mentions Detection Dataset (DMDD), the largest publicly available corpus for this task. DMDD consists of the DMDD main corpus, comprising 31,219 scientific articles with over 449,000 dataset mentions weakly annotated in the format of in-text spans, and an evaluation set, which comprises of 450 scientific articles manually annotated for evaluation purposes. We use DMDD to establish baseline performance for dataset mention detection and linking. By analyzing the performance of various models on DMDD, we are able to identify open problems in dataset mention detection. We invite the community to use our dataset as a challenge to develop novel dataset mention detection models.
Abstract:Impressive advances in acquisition and sharing technologies have made the growth of multimedia collections and their applications almost unlimited. However, the opposite is true for the availability of labeled data, which is needed for supervised training, since such data is often expensive and time-consuming to obtain. While there is a pressing need for the development of effective retrieval and classification methods, the difficulties faced by supervised approaches highlight the relevance of methods capable of operating with few or no labeled data. In this work, we propose a novel manifold learning algorithm named Rank Flow Embedding (RFE) for unsupervised and semi-supervised scenarios. The proposed method is based on ideas recently exploited by manifold learning approaches, which include hypergraphs, Cartesian products, and connected components. The algorithm computes context-sensitive embeddings, which are refined following a rank-based processing flow, while complementary contextual information is incorporated. The generated embeddings can be exploited for more effective unsupervised retrieval or semi-supervised classification based on Graph Convolutional Networks. Experimental results were conducted on 10 different collections. Various features were considered, including the ones obtained with recent Convolutional Neural Networks (CNN) and Vision Transformer (ViT) models. High effective results demonstrate the effectiveness of the proposed method on different tasks: unsupervised image retrieval, semi-supervised classification, and person Re-ID. The results demonstrate that RFE is competitive or superior to the state-of-the-art in diverse evaluated scenarios.
Abstract:Due to a huge volume of information in many domains, the need for classification methods is imperious. In spite of many advances, most of the approaches require a large amount of labeled data, which is often not available, due to costs and difficulties of manual labeling processes. In this scenario, unsupervised and semi-supervised approaches have been gaining increasing attention. The GCNs (Graph Convolutional Neural Networks) represent a promising solution since they encode the neighborhood information and have achieved state-of-the-art results on scenarios with limited labeled data. However, since GCNs require graph-structured data, their use for semi-supervised image classification is still scarce in the literature. In this work, we propose a novel approach, the Manifold-GCN, based on GCNs for semi-supervised image classification. The main hypothesis of this paper is that the use of manifold learning to model the graph structure can further improve the GCN classification. To the best of our knowledge, this is the first framework that allows the combination of GCNs with different types of manifold learning approaches for image classification. All manifold learning algorithms employed are completely unsupervised, which is especially useful for scenarios where the availability of labeled data is a concern. A broad experimental evaluation was conducted considering 5 GCN models, 3 manifold learning approaches, 3 image datasets, and 5 deep features. The results reveal that our approach presents better accuracy than traditional and recent state-of-the-art methods with very efficient run times for both training and testing.
Abstract:In recent years, there is a growing number of pre-trained models trained on a large corpus of data and yielding good performance on various tasks such as classifying multimodal datasets. These models have shown good performance on natural images but are not fully explored for scarce abstract concepts in images. In this work, we introduce an image/text-based dataset called Greeting Cards. Dataset (GCD) that has abstract visual concepts. In our work, we propose to aggregate features from pretrained images and text embeddings to learn abstract visual concepts from GCD. This allows us to learn the text-modified image features, which combine complementary and redundant information from the multi-modal data streams into a single, meaningful feature. Secondly, the captions for the GCD dataset are computed with the pretrained CLIP-based image captioning model. Finally, we also demonstrate that the proposed the dataset is also useful for generating greeting card images using pre-trained text-to-image generation model.
Abstract:The computer-assisted radiologic informative report is currently emerging in dental practice to facilitate dental care and reduce time consumption in manual panoramic radiographic interpretation. However, the amount of dental radiographs for training is very limited, particularly from the point of view of deep learning. This study aims to utilize recent self-supervised learning methods like SimMIM and UM-MAE to increase the model efficiency and understanding of the limited number of dental radiographs. We use the Swin Transformer for teeth numbering, detection of dental restorations, and instance segmentation tasks. To the best of our knowledge, this is the first study that applied self-supervised learning methods to Swin Transformer on dental panoramic radiographs. Our results show that the SimMIM method obtained the highest performance of 90.4% and 88.9% on detecting teeth and dental restorations and instance segmentation, respectively, increasing the average precision by 13.4 and 12.8 over the random initialization baseline. Moreover, we augment and correct the existing dataset of panoramic radiographs. The code and the dataset are available at https://github.com/AmaniHAlmalki/DentalMIM.
Abstract:The recent advances of compressing high-accuracy convolution neural networks (CNNs) have witnessed remarkable progress for real-time object detection. To accelerate detection speed, lightweight detectors always have few convolution layers using single-path backbone. Single-path architecture, however, involves continuous pooling and downsampling operations, always resulting in coarse and inaccurate feature maps that are disadvantageous to locate objects. On the other hand, due to limited network capacity, recent lightweight networks are often weak in representing large scale visual data. To address these problems, this paper presents a dual-path network, named DPNet, with a lightweight attention scheme for real-time object detection. The dual-path architecture enables us to parallelly extract high-level semantic features and low-level object details. Although DPNet has nearly duplicated shape with respect to single-path detectors, the computational costs and model size are not significantly increased. To enhance representation capability, a lightweight self-correlation module (LSCM) is designed to capture global interactions, with only few computational overheads and network parameters. In neck, LSCM is extended into a lightweight crosscorrelation module (LCCM), capturing mutual dependencies among neighboring scale features. We have conducted exhaustive experiments on MS COCO and Pascal VOC 2007 datasets. The experimental results demonstrate that DPNet achieves state-of the-art trade-off between detection accuracy and implementation efficiency. Specifically, DPNet achieves 30.5% AP on MS COCO test-dev and 81.5% mAP on Pascal VOC 2007 test set, together mwith nearly 2.5M model size, 1.04 GFLOPs, and 164 FPS and 196 FPS for 320 x 320 input images of two datasets.