Abstract:While recent years have witnessed the advancement in big data and Artificial Intelligence (AI), it is of much importance to safeguard data privacy and security. As an innovative approach, Federated Learning (FL) addresses these concerns by facilitating collaborative model training across distributed data sources without transferring raw data. However, the challenges of robust security and privacy across decentralized networks catch significant attention in dealing with the distributed data in FL. In this paper, we conduct an extensive survey of the security and privacy issues prevalent in FL, underscoring the vulnerability of communication links and the potential for cyber threats. We delve into various defensive strategies to mitigate these risks, explore the applications of FL across different sectors, and propose research directions. We identify the intricate security challenges that arise within the FL frameworks, aiming to contribute to the development of secure and efficient FL systems.
Abstract:Generalized Category Discovery (GCD) aims to classify inputs into both known and novel categories, a task crucial for open-world scientific discoveries. However, current GCD methods are limited to unimodal data, overlooking the inherently multimodal nature of most real-world data. In this work, we extend GCD to a multimodal setting, where inputs from different modalities provide richer and complementary information. Through theoretical analysis and empirical validation, we identify that the key challenge in multimodal GCD lies in effectively aligning heterogeneous information across modalities. To address this, we propose MM-GCD, a novel framework that aligns both the feature and output spaces of different modalities using contrastive learning and distillation techniques. MM-GCD achieves new state-of-the-art performance on the UPMC-Food101 and N24News datasets, surpassing previous methods by 11.5\% and 4.7\%, respectively.
Abstract:Cryo-Electron Tomography (cryo-ET) is a 3D imaging technology facilitating the study of macromolecular structures at near-atomic resolution. Recent volumetric segmentation approaches on cryo-ET images have drawn widespread interest in biological sector. However, existing methods heavily rely on manually labeled data, which requires highly professional skills, thereby hindering the adoption of fully-supervised approaches for cryo-ET images. Some unsupervised domain adaptation (UDA) approaches have been designed to enhance the segmentation network performance using unlabeled data. However, applying these methods directly to cryo-ET images segmentation tasks remains challenging due to two main issues: 1) the source data, usually obtained through simulation, contain a certain level of noise, while the target data, directly collected from raw-data from real-world scenario, have unpredictable noise levels. 2) the source data used for training typically consists of known macromoleculars, while the target domain data are often unknown, causing the model's segmenter to be biased towards these known macromolecules, leading to a domain shift problem. To address these challenges, in this work, we introduce the first voxel-wise unsupervised domain adaptation approach, termed Vox-UDA, specifically for cryo-ET subtomogram segmentation. Vox-UDA incorporates a noise generation module to simulate target-like noises in the source dataset for cross-noise level adaptation. Additionally, we propose a denoised pseudo-labeling strategy based on improved Bilateral Filter to alleviate the domain shift problem. Experimental results on both simulated and real cryo-ET subtomogram datasets demonstrate the superiority of our proposed approach compared to state-of-the-art UDA methods.
Abstract:This work presents a new robotics simulation environment built upon Unreal Engine 5 (UE5) for agricultural image data generation. The simulation utilizes the state-of-the-art real-time rendering engine to provide realistic plant images which are often used in agricultural applications. This study showcases the rendering accuracy of UE5 in comparison to existing tools and assesses its positional accuracy when integrated with Robot Operating Systems (ROS). The results indicate that UE5 achieves an impressive average distance error of 0.021mm when compared to predetermined setpoints in a multi-robot setup involving two UR10 arms.
Abstract:Cross-modal distillation has been widely used to transfer knowledge across different modalities, enriching the representation of the target unimodal one. Recent studies highly relate the temporal synchronization between vision and sound to the semantic consistency for cross-modal distillation. However, such semantic consistency from the synchronization is hard to guarantee in unconstrained videos, due to the irrelevant modality noise and differentiated semantic correlation. To this end, we first propose a \textit{Modality Noise Filter} (MNF) module to erase the irrelevant noise in teacher modality with cross-modal context. After this purification, we then design a \textit{Contrastive Semantic Calibration} (CSC) module to adaptively distill useful knowledge for target modality, by referring to the differentiated sample-wise semantic correlation in a contrastive fashion. Extensive experiments show that our method could bring a performance boost compared with other distillation methods in both visual action recognition and video retrieval task. We also extend to the audio tagging task to prove the generalization of our method. The source code is available at \href{https://github.com/GeWu-Lab/cross-modal-distillation}{https://github.com/GeWu-Lab/cross-modal-distillation}.
Abstract:Although more layers and more parameters generally improve the accuracy of the models, such big models generally have high computational complexity and require big memory, which exceed the capacity of small devices for inference and incurs long training time. In addition, it is difficult to afford long training time and inference time of big models even in high performance servers, as well. As an efficient approach to compress a large deep model (a teacher model) to a compact model (a student model), knowledge distillation emerges as a promising approach to deal with the big models. Existing knowledge distillation methods cannot exploit the elastic available computing resources and correspond to low efficiency. In this paper, we propose an Elastic Deep Learning framework for knowledge Distillation, i.e., EDL-Dist. The advantages of EDL-Dist are three-fold. First, the inference and the training process is separated. Second, elastic available computing resources can be utilized to improve the efficiency. Third, fault-tolerance of the training and inference processes is supported. We take extensive experimentation to show that the throughput of EDL-Dist is up to 3.125 times faster than the baseline method (online knowledge distillation) while the accuracy is similar or higher.
Abstract:The advent of large-scale pre-trained language models has contributed greatly to the recent progress in natural language processing. Many state-of-the-art language models are first trained on a large text corpus and then fine-tuned on downstream tasks. Despite its recent success and wide adoption, fine-tuning a pre-trained language model often suffers from overfitting, which leads to poor generalizability due to the extremely high complexity of the model and the limited training samples from downstream tasks. To address this problem, we propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR). Specifically, we propose to inject the standard Gaussian noise or In-manifold noise and regularize hidden representations of the fine-tuned model. We first provide theoretical analyses to support the efficacy of our method. We then demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART. While these previous works only verify the effectiveness of their methods on relatively simple text classification tasks, we also verify the effectiveness of our method on question answering tasks, where the target problem is much more difficult and more training examples are available. Furthermore, extensive experimental results indicate that the proposed algorithm can not only enhance the in-domain performance of the language models but also improve the domain generalization performance on out-of-domain data.
Abstract:Uncertainty estimation for unlabeled data is crucial to active learning. With a deep neural network employed as the backbone model, the data selection process is highly challenging due to the potential over-confidence of the model inference. Existing methods resort to special learning fashions (e.g. adversarial) or auxiliary models to address this challenge. This tends to result in complex and inefficient pipelines, which would render the methods impractical. In this work, we propose a novel algorithm that leverages noise stability to estimate data uncertainty in a Single-Training Multi-Inference fashion. The key idea is to measure the output derivation from the original observation when the model parameters are randomly perturbed by noise. We provide theoretical analyses by leveraging the small Gaussian noise theory and demonstrate that our method favors a subset with large and diverse gradients. Despite its simplicity, our method outperforms the state-of-the-art active learning baselines in various tasks, including computer vision, natural language processing, and structural data analysis.
Abstract:Pre-training has been a popular learning paradigm in deep learning era, especially in annotation-insufficient scenario. Better ImageNet pre-trained models have been demonstrated, from the perspective of architecture, by previous research to have better transferability to downstream tasks. However, in this paper, we found that during the same pre-training process, models at middle epochs, which is inadequately pre-trained, can outperform fully trained models when used as feature extractors (FE), while the fine-tuning (FT) performance still grows with the source performance. This reveals that there is not a solid positive correlation between top-1 accuracy on ImageNet and the transferring result on target data. Based on the contradictory phenomenon between FE and FT that better feature extractor fails to be fine-tuned better accordingly, we conduct comprehensive analyses on features before softmax layer to provide insightful explanations. Our discoveries suggest that, during pre-training, models tend to first learn spectral components corresponding to large singular values and the residual components contribute more when fine-tuning.
Abstract:Central to active learning (AL) is what data should be selected for annotation. Existing works attempt to select highly uncertain or informative data for annotation. Nevertheless, it remains unclear how selected data impacts the test performance of the task model used in AL. In this work, we explore such an impact by theoretically proving that selecting unlabeled data of higher gradient norm leads to a lower upper bound of test loss, resulting in a better test performance. However, due to the lack of label information, directly computing gradient norm for unlabeled data is infeasible. To address this challenge, we propose two schemes, namely expected-gradnorm and entropy-gradnorm. The former computes the gradient norm by constructing an expected empirical loss while the latter constructs an unsupervised loss with entropy. Furthermore, we integrate the two schemes in a universal AL framework. We evaluate our method on classical image classification and semantic segmentation tasks. To demonstrate its competency in domain applications and its robustness to noise, we also validate our method on a cellular imaging analysis task, namely cryo-Electron Tomography subtomogram classification. Results demonstrate that our method achieves superior performance against the state-of-the-art. Our source code is available at https://github.com/xulabs/aitom