Abstract:Generalized Category Discovery (GCD) aims to classify inputs into both known and novel categories, a task crucial for open-world scientific discoveries. However, current GCD methods are limited to unimodal data, overlooking the inherently multimodal nature of most real-world data. In this work, we extend GCD to a multimodal setting, where inputs from different modalities provide richer and complementary information. Through theoretical analysis and empirical validation, we identify that the key challenge in multimodal GCD lies in effectively aligning heterogeneous information across modalities. To address this, we propose MM-GCD, a novel framework that aligns both the feature and output spaces of different modalities using contrastive learning and distillation techniques. MM-GCD achieves new state-of-the-art performance on the UPMC-Food101 and N24News datasets, surpassing previous methods by 11.5\% and 4.7\%, respectively.
Abstract:Image classification is one of the most fundamental capabilities of machine vision intelligence. In this work, we revisit the image classification task using visually-grounded language models (VLMs) such as GPT-4V and LLaVA. We find that existing proprietary and public VLMs, despite often using CLIP as a vision encoder and having many more parameters, significantly underperform CLIP on standard image classification benchmarks like ImageNet. To understand the reason, we explore several hypotheses concerning the inference algorithms, training objectives, and data processing in VLMs. Our analysis reveals that the primary cause is data-related: critical information for image classification is encoded in the VLM's latent space but can only be effectively decoded with enough training data. Specifically, there is a strong correlation between the frequency of class exposure during VLM training and instruction-tuning and the VLM's performance in those classes; when trained with sufficient data, VLMs can match the accuracy of state-of-the-art classification models. Based on these findings, we enhance a VLM by integrating classification-focused datasets into its training, and demonstrate that the enhanced classification performance of the VLM transfers to its general capabilities, resulting in an improvement of 11.8% on the newly collected ImageWikiQA dataset.