Abstract:While data is distributed in multiple edge devices, Federated Learning (FL) is attracting more and more attention to collaboratively train a machine learning model without transferring raw data. FL generally exploits a parameter server and a large number of edge devices during the whole process of the model training, while several devices are selected in each round. However, straggler devices may slow down the training process or even make the system crash during training. Meanwhile, other idle edge devices remain unused. As the bandwidth between the devices and the server is relatively low, the communication of intermediate data becomes a bottleneck. In this paper, we propose Time-Efficient Asynchronous federated learning with Sparsification and Quantization, i.e., TEASQ-Fed. TEASQ-Fed can fully exploit edge devices to asynchronously participate in the training process by actively applying for tasks. We utilize control parameters to choose an appropriate number of parallel edge devices, which simultaneously execute the training tasks. In addition, we introduce a caching mechanism and weighted averaging with respect to model staleness to further improve the accuracy. Furthermore, we propose a sparsification and quantitation approach to compress the intermediate data to accelerate the training. The experimental results reveal that TEASQ-Fed improves the accuracy (up to 16.67% higher) while accelerating the convergence of model training (up to twice faster).
Abstract:Widely available healthcare services are now getting popular because of advancements in wearable sensing techniques and mobile edge computing. People's health information is collected by edge devices such as smartphones and wearable bands for further analysis on servers, then send back suggestions and alerts for abnormal conditions. The recent emergence of federated learning allows users to train private data on local devices while updating models collaboratively. However, the heterogeneous distribution of the health condition data may lead to significant risks to model performance due to class imbalance. Meanwhile, as FL training is powered by sharing gradients only with the server, training data is almost inaccessible. The conventional solutions to class imbalance do not work for federated learning. In this work, we propose a new federated learning framework FedImT, dedicated to addressing the challenges of class imbalance in federated learning scenarios. FedImT contains an online scheme that can estimate the data composition during each round of aggregation, then introduces a self-attenuating iterative equivalent to track variations of multiple estimations and promptly tweak the balance of the loss computing for minority classes. Experiments demonstrate the effectiveness of FedImT in solving the imbalance problem without extra energy consumption and avoiding privacy risks.
Abstract:For multiple Unmanned-Aerial-Vehicles (UAVs) assisted Mobile Edge Computing (MEC) networks, we study the problem of combined computation and communication for user equipments deployed with multi-type tasks. Specifically, we consider that the MEC network encompasses both communication and computation uncertainties, where the partial channel state information and the inaccurate estimation of task complexity are only available. We introduce a robust design accounting for these uncertainties and minimize the total weighted energy consumption by jointly optimizing UAV trajectory, task partition, as well as the computation and communication resource allocation in the multi-UAV scenario. The formulated problem is challenging to solve with the coupled optimization variables and the high uncertainties. To overcome this issue, we reformulate a multi-agent Markov decision process and propose a multi-agent proximal policy optimization with Beta distribution framework to achieve a flexible learning policy. Numerical results demonstrate the effectiveness and robustness of the proposed algorithm for the multi-UAV-assisted MEC network, which outperforms the representative benchmarks of the deep reinforcement learning and heuristic algorithms.
Abstract:Resource allocation is conceived for cell-free (CF) massive multi-input multi-output (MIMO)-aided ultra-reliable and low latency communication (URLLC) systems. Specifically, to support multiple devices with limited pilot overhead, pilot reuse among the users is considered, where we formulate a joint pilot length and pilot allocation strategy for maximizing the number of devices admitted. Then, the pilot power and transmit power are jointly optimized while simultaneously satisfying the devices' decoding error probability, latency, and data rate requirements. Firstly, we derive the lower bounds (LBs) of ergodic data rate under finite channel blocklength (FCBL). Then, we propose a novel pilot assignment algorithm for maximizing the number of devices admitted. Based on the pilot allocation pattern advocated, the weighted sum rate (WSR) is maximized by jointly optimizing the pilot power and payload power. To tackle the resultant NP-hard problem, the original optimization problem is first simplified by sophisticated mathematical transformations, and then approximations are found for transforming the original problems into a series of subproblems in geometric programming (GP) forms that can be readily solved. Simulation results demonstrate that the proposed pilot allocation strategy is capable of significantly increasing the number of admitted devices and the proposed power allocation achieves substantial WSR performance gain.
Abstract:This paper considers an active reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) system. We aim to maximize Radar signal-to-interference-plus-noise-ratio (SINR) by jointly optimizing the beamforming matrix at the dual-function Radar-communication (DFRC) base station (BS) and the reflecting coefficient matrix at the active RIS subject to the quality of service (QoS) constraint of communication users (UE) and the transmit power constraints of active RIS and DFRC BS. In the proposed scenario, we mainly focus on the four-hop BS-RIS-target-RIS-BS sensing link, and the direct BS-target-BS link is assumed to be blocked. Due to the coupling of the beamforming matrix and the reflecting coefficient matrix, we use the alternating optimization (AO) method to solve the problem. Given reflecting coefficients, we apply majorization-minimization (MM) and semidefinite programming (SDP) methods to deal with the nonconvex QoS constraints and Radar SINR objective functions. An initialization method is proposed to obtain a high-quality converged solution, and a sufficient condition of the feasibility of the original problem is provided. Since the signal for sensing is reflected twice at the same active RIS panel, the Radar SINR and active RIS transmit power are quartic functions of RIS coefficients after using the MM algorithm. We then transform the problem into a sum of square (SOS) form, and a semidefinite relaxation (SDR)-based algorithm is developed to solve the problem. Finally, simulation results validate the potential of active RIS in enhancing the performance of the ISAC system compared to the passive RIS, and indicate that the transmit power and physical location of the active RIS should be carefully chosen.
Abstract:Millimeter wave (mmWave) massive multiple-input multiple-output (massive MIMO) is one of the most promising technologies for the fifth generation and beyond wireless communication system. However, a large number of antennas incur high power consumption and hardware costs, and high-frequency communications place a heavy burden on the analog-to-digital converters (ADCs) at the base station (BS). Furthermore, it is too costly to equipping each antenna with a high-precision ADC in a large antenna array system. It is promising to adopt low-resolution ADCs to address this problem. In this paper, we investigate the cascaded channel estimation for a mmWave massive MIMO system aided by a reconfigurable intelligent surface (RIS) with the BS equipped with few-bit ADCs. Due to the low-rank property of the cascaded channel, the estimation of the cascaded channel can be formulated as a low-rank matrix completion problem. We introduce a Bayesian optimal estimation framework for estimating the user-RIS-BS cascaded channel to tackle with the information loss caused by quantization. To implement the estimator and achieve the matrix completion, we use efficient bilinear generalized approximate message passing (BiG-AMP) algorithm. Extensive simulation results verify that our proposed method can accurately estimate the cascaded channel for the RIS-aided mmWave massive MIMO system with low-resolution ADCs.
Abstract:Because of disaster, terrestrial base stations (TBS) would be partly crashed. Some user equipments (UE) would be unserved. Deploying unmanned aerial vehicles (UAV) as aerial base stations is a method to cover UEs quickly. But existing methods solely refer to the coverage of UAVs. In those scenarios, they focus on the deployment of UAVs in the post-disaster area where all TBSs do not work any longer. There is limited research about the combination of available TBSs and UAVs. We propose the method to deploy UAVs cooperating with available TBSs as aerial base stations. And improve the coverage by reinforcement learning. Besides, in the experiments, we cluster UEs with balanced iterative reducing and clustering using hierarchies (BIRCH) at first. Finally, achieve base stations' better coverage to UEs through Q-learning.
Abstract:As intelligent transportation systems been implemented broadly and unmanned arial vehicles (UAVs) can assist terrestrial base stations acting as multi-access edge computing (MEC) to provide a better wireless network communication for Internet of Vehicles (IoVs), we propose a UAVs-assisted approach to help provide a better wireless network service retaining the maximum Quality of Experience(QoE) of the IoVs on the lane. In the paper, we present a Multi-Agent Graph Convolutional Deep Reinforcement Learning (M-AGCDRL) algorithm which combines local observations of each agent with a low-resolution global map as input to learn a policy for each agent. The agents can share their information with others in graph attention networks, resulting in an effective joint policy. Simulation results show that the M-AGCDRL method enables a better QoE of IoTs and achieves good performance.
Abstract:Nowadays many cities around the world have introduced electric buses to optimize urban traffic and reduce local carbon emissions. In order to cut carbon emissions and maximize the utility of electric buses, it is important to choose suitable routes for them. Traditionally, route selection is on the basis of dedicated surveys, which are costly in time and labor. In this paper, we mainly focus attention on planning electric bus routes intelligently, depending on the unique needs of each region throughout the city. We propose Clairvoyance, a route planning system that leverages a deep neural network and a multilayer perceptron to predict the future people's trips and the future transportation carbon emission in the whole city, respectively. Given the future information of people's trips and transportation carbon emission, we utilize a greedy mechanism to recommend bus routes for electric buses that will depart in an ideal state. Furthermore, representative features of the two neural networks are extracted from the heterogeneous urban datasets. We evaluate our approach through extensive experiments on real-world data sources in Zhuhai, China. The results show that our designed neural network-based algorithms are consistently superior to the typical baselines. Additionally, the recommended routes for electric buses are helpful in reducing the peak value of carbon emissions and making full use of electric buses in the city.
Abstract:The health-care gets huge stress in a pandemic or epidemic situation. Some diseases such as COVID-19 that causes a pandemic is highly spreadable from an infected person to others. Therefore, providing health services at home for non-critical infected patients with isolation shall assist to mitigate this kind of stress. In addition, this practice is also very useful for monitoring the health-related activities of elders who live at home. The home health monitoring, a continuous monitoring of a patient or elder at home using visual sensors is one such non-intrusive sub-area of health services at home. In this article, we propose a transfer learning-based edge computing method for home health monitoring. Specifically, a pre-trained convolutional neural network-based model can leverage edge devices with a small amount of ground-labeled data and fine-tuning method to train the model. Therefore, on-site computing of visual data captured by RGB, depth, or thermal sensor could be possible in an affordable way. As a result, raw data captured by these types of sensors is not required to be sent outside from home. Therefore, privacy, security, and bandwidth scarcity shall not be issues. Moreover, real-time computing for the above-mentioned purposes shall be possible in an economical way.