Abstract:Online psychological counseling dialogue systems are trending, offering a convenient and accessible alternative to traditional in-person therapy. However, existing psychological counseling dialogue systems mainly focus on basic empathetic dialogue or QA with minimal professional knowledge and without goal guidance. In many real-world counseling scenarios, clients often seek multi-type help, such as diagnosis, consultation, therapy, console, and common questions, but existing dialogue systems struggle to combine different dialogue types naturally. In this paper, we identify this challenge as how to construct mixed-type dialogue systems for psychological counseling that enable clients to clarify their goals before proceeding with counseling. To mitigate the challenge, we collect a mixed-type counseling dialogues corpus termed STAMPsy, covering five dialogue types, task-oriented dialogue for diagnosis, knowledge-grounded dialogue, conversational recommendation, empathetic dialogue, and question answering, over 5,000 conversations. Moreover, spatiotemporal-aware knowledge enables systems to have world awareness and has been proven to affect one's mental health. Therefore, we link dialogues in STAMPsy to spatiotemporal state and propose a spatiotemporal-aware mixed-type psychological counseling dataset. Additionally, we build baselines on STAMPsy and develop an iterative self-feedback psychological dialogue generation framework, named Self-STAMPsy. Results indicate that clarifying dialogue goals in advance and utilizing spatiotemporal states are effective.
Abstract:Following formatting instructions to generate well-structured content is a fundamental yet often unmet capability for large language models (LLMs). To study this capability, which we refer to as format faithfulness, we present FormatBench, a comprehensive format-related benchmark. Compared to previous format-related benchmarks, FormatBench involves a greater variety of tasks in terms of application scenes (traditional NLP tasks, creative works, autonomous agency tasks), human-LLM interaction styles (single-turn instruction, multi-turn chat), and format types (inclusion, wrapping, length, coding). Moreover, each task in FormatBench is attached with a format checker program. Extensive experiments on the benchmark reveal that state-of-the-art open- and closed-source LLMs still suffer from severe deficiency in format faithfulness. By virtue of the decidable nature of formats, we propose to Reinforce Format Faithfulness (ReFF) to help LLMs generate formatted output as instructed without compromising general quality. Without any annotated data, ReFF can substantially improve the format faithfulness rate (e.g., from 21.6% in original LLaMA3 to 95.0% on caption segmentation task), while keep the general quality comparable (e.g., from 47.3 to 46.4 in F1 scores). Combined with labeled training data, ReFF can simultaneously improve both format faithfulness (e.g., from 21.6% in original LLaMA3 to 75.5%) and general quality (e.g., from 47.3 to 61.6 in F1 scores). We further offer an interpretability analysis to explain how ReFF improves both format faithfulness and general quality.
Abstract:Large language model (LLM) safety is a critical issue, with numerous studies employing red team testing to enhance model security. Among these, jailbreak methods explore potential vulnerabilities by crafting malicious prompts that induce model outputs contrary to safety alignments. Existing black-box jailbreak methods often rely on model feedback, repeatedly submitting queries with detectable malicious instructions during the attack search process. Although these approaches are effective, the attacks may be intercepted by content moderators during the search process. We propose an improved transfer attack method that guides malicious prompt construction by locally training a mirror model of the target black-box model through benign data distillation. This method offers enhanced stealth, as it does not involve submitting identifiable malicious instructions to the target model during the search phase. Our approach achieved a maximum attack success rate of 92%, or a balanced value of 80% with an average of 1.5 detectable jailbreak queries per sample against GPT-3.5 Turbo on a subset of AdvBench. These results underscore the need for more robust defense mechanisms.
Abstract:The success of Large Language Models (LLMs) is inherently linked to the availability of vast, diverse, and high-quality data for training and evaluation. However, the growth rate of high-quality data is significantly outpaced by the expansion of training datasets, leading to a looming data exhaustion crisis. This underscores the urgent need to enhance data efficiency and explore new data sources. In this context, synthetic data has emerged as a promising solution. Currently, data generation primarily consists of two major approaches: data augmentation and synthesis. This paper comprehensively reviews and summarizes data generation techniques throughout the lifecycle of LLMs, including data preparation, pre-training, fine-tuning, instruction-tuning, preference alignment, and applications. Furthermore, We discuss the current constraints faced by these methods and investigate potential pathways for future development and research. Our aspiration is to equip researchers with a clear understanding of these methodologies, enabling them to swiftly identify appropriate data generation strategies in the construction of LLMs, while providing valuable insights for future exploration.
Abstract:Large language models (LLMs) embed extensive knowledge and utilize it to perform exceptionally well across various tasks. Nevertheless, outdated knowledge or factual errors within LLMs can lead to misleading or incorrect responses, causing significant issues in practical applications. To rectify the fatal flaw without the necessity for costly model retraining, various model editing approaches have been proposed to correct inaccurate knowledge within LLMs in a cost-efficient way. To evaluate these model editing methods, previous work introduced a series of datasets. However, most of the previous datasets only contain fabricated data in a single format, which diverges from real-world model editing scenarios, raising doubts about their usability in practice. To facilitate the application of model editing in real-world scenarios, we propose the challenge of practicality. To resolve such challenges and effectively enhance the capabilities of LLMs, we present FAME, an factual, comprehensive, and multi-task dataset, which is designed to enhance the practicality of model editing. We then propose SKEME, a model editing method that uses a novel caching mechanism to ensure synchronization with the real world. The experiments demonstrate that SKEME performs excellently across various tasks and scenarios, confirming its practicality.
Abstract:Data augmentation is an effective way to diversify corpora in machine translation, but previous methods may introduce semantic inconsistency between original and augmented data because of irreversible operations and random subword sampling procedures. To generate both symbolically diverse and semantically consistent augmentation data, we propose Deterministic Reversible Data Augmentation (DRDA), a simple but effective data augmentation method for neural machine translation. DRDA adopts deterministic segmentations and reversible operations to generate multi-granularity subword representations and pulls them closer together with multi-view techniques. With no extra corpora or model changes required, DRDA outperforms strong baselines on several translation tasks with a clear margin (up to 4.3 BLEU gain over Transformer) and exhibits good robustness in noisy, low-resource, and cross-domain datasets.
Abstract:This paper surveys and organizes research works on medical dialog systems, which is an important yet challenging task. Although these systems have been surveyed in the medical community from an application perspective, a systematic review from a rigorous technical perspective has to date remained noticeably absent. As a result, an overview of the categories, methods, and evaluation of medical dialogue systems remain limited and underspecified, hindering the further improvement of this area. To fill this gap, we investigate an initial pool of 325 papers from well-known computer science, and natural language processing conferences and journals, and make an overview. Recently, large language models have shown strong model capacity on downstream tasks, which also reshaped medical dialog systems' foundation. Despite the alluring practical application value, current medical dialogue systems still suffer from problems. To this end, this paper lists the grand challenges of medical dialog systems, especially of large language models.
Abstract:Named entity recognition (NER) is a fundamental task in natural language processing that involves identifying and classifying entities in sentences into pre-defined types. It plays a crucial role in various research fields, including entity linking, question answering, and online product recommendation. Recent studies have shown that incorporating multilingual and multimodal datasets can enhance the effectiveness of NER. This is due to language transfer learning and the presence of shared implicit features across different modalities. However, the lack of a dataset that combines multilingualism and multimodality has hindered research exploring the combination of these two aspects, as multimodality can help NER in multiple languages simultaneously. In this paper, we aim to address a more challenging task: multilingual and multimodal named entity recognition (MMNER), considering its potential value and influence. Specifically, we construct a large-scale MMNER dataset with four languages (English, French, German and Spanish) and two modalities (text and image). To tackle this challenging MMNER task on the dataset, we introduce a new model called 2M-NER, which aligns the text and image representations using contrastive learning and integrates a multimodal collaboration module to effectively depict the interactions between the two modalities. Extensive experimental results demonstrate that our model achieves the highest F1 score in multilingual and multimodal NER tasks compared to some comparative and representative baselines. Additionally, in a challenging analysis, we discovered that sentence-level alignment interferes a lot with NER models, indicating the higher level of difficulty in our dataset.
Abstract:The tendency of Large Language Models to generate hallucinations and exhibit overconfidence in predictions raises concerns regarding their reliability. Confidence or uncertainty estimations indicating the extent of trustworthiness of a model's response are essential to developing reliable AI systems. Current research primarily focuses on LLM confidence estimations in English, remaining a void for other widely used languages and impeding the global development of reliable AI applications. This paper introduces a comprehensive investigation of Multi-lingual confidence estimation (MlingConf) on LLMs. First, we introduce an elaborated and expert-checked multilingual QA dataset. Second, we delve into the performance of confidence estimations and examine how these confidence scores can enhance LLM performance through self-refinement across diverse languages. Finally, we propose a cross-lingual confidence estimation method to achieve more precise confidence scores. The experimental results showcase the performance of various confidence estimation methods across different languages as well as present that our proposed cross-lingual confidence estimation technique significantly enhances confidence estimation and outperforms several baseline methods.
Abstract:Proactively and naturally guiding the dialog from the non-recommendation context (e.g., Chit-chat) to the recommendation scenario (e.g., Music) is crucial for the Conversational Recommender System (CRS). Prior studies mainly focus on planning the next dialog goal~(e.g., chat on a movie star) conditioned on the previous dialog. However, we find the dialog goals can be simultaneously observed at different levels, which can be utilized to improve CRS. In this paper, we propose Dual-space Hierarchical Learning (DHL) to leverage multi-level goal sequences and their hierarchical relationships for conversational recommendation. Specifically, we exploit multi-level goal sequences from both the representation space and the optimization space. In the representation space, we propose the hierarchical representation learning where a cross attention module derives mutually enhanced multi-level goal representations. In the optimization space, we devise the hierarchical weight learning to reweight lower-level goal sequences, and introduce bi-level optimization for stable update. Additionally, we propose a soft labeling strategy to guide optimization gradually. Experiments on two real-world datasets verify the effectiveness of our approach. Code and data are available here.