Abstract:Open-vocabulary object detection in remote sensing commonly relies on text-only prompting to specify target categories, implicitly assuming that inference-time category queries can be reliably grounded through pretraining-induced text-visual alignment. In practice, this assumption often breaks down in remote sensing scenarios due to task- and application-specific category semantics, resulting in unstable category specification under open-vocabulary settings. To address this limitation, we propose RS-MPOD, a multimodal open-vocabulary detection framework that reformulates category specification beyond text-only prompting by incorporating instance-grounded visual prompts, textual prompts, and their multimodal integration. RS-MPOD introduces a visual prompt encoder to extract appearance-based category cues from exemplar instances, enabling text-free category specification, and a multimodal fusion module to integrate visual and textual information when both modalities are available. Extensive experiments on standard, cross-dataset, and fine-grained remote sensing benchmarks show that visual prompting yields more reliable category specification under semantic ambiguity and distribution shifts, while multimodal prompting provides a flexible alternative that remains competitive when textual semantics are well aligned.
Abstract:Large Reasoning Models (LRMs) excel at complex reasoning tasks through extended chain-of-thought generation, but their reliance on lengthy intermediate steps incurs substantial computational cost. We find that the entropy of the model's output distribution in early reasoning steps reliably distinguishes correct from incorrect reasoning. Motivated by this observation, we propose EntroCut, a training-free method that dynamically truncates reasoning by identifying high-confidence states where reasoning can be safely terminated. To comprehensively evaluate the trade-off between efficiency and accuracy, we introduce the Efficiency-Performance Ratio (EPR), a unified metric that quantifies relative token savings per unit accuracy loss. Experiments on four benchmarks show that EntroCut reduces token usage by up to 40\% with minimal accuracy sacrifice, achieving superior efficiency-performance trade-offs compared with existing training-free methods. These results demonstrate that entropy-guided dynamic truncation provides a practical approach to mitigate the inefficiency of LRMs.




Abstract:Despite large language models (LLMs) have achieved impressive achievements across numerous tasks, supervised fine-tuning (SFT) remains essential for adapting these models to specialized domains. However, SFT for domain specialization can be resource-intensive and sometimes leads to a deterioration in performance over general capabilities due to catastrophic forgetting (CF). To address these issues, we propose a self-adaptive gradient-aware data selection approach (GrADS) for supervised fine-tuning of LLMs, which identifies effective subsets of training data by analyzing gradients obtained from a preliminary training phase. Specifically, we design self-guided criteria that leverage the magnitude and statistical distribution of gradients to prioritize examples that contribute the most to the model's learning process. This approach enables the acquisition of representative samples that enhance LLMs understanding of domain-specific tasks. Through extensive experimentation with various LLMs across diverse domains such as medicine, law, and finance, GrADS has demonstrated significant efficiency and cost-effectiveness. Remarkably, utilizing merely 5% of the selected GrADS data, LLMs already surpass the performance of those fine-tuned on the entire dataset, and increasing to 50% of the data results in significant improvements! With catastrophic forgetting substantially mitigated simultaneously. We will release our code for GrADS later.
Abstract:Normalization layer constitutes an essential component in neural networks. In transformers, the predominantly used RMSNorm constrains vectors to a unit hypersphere, followed by dimension-wise rescaling through a learnable scaling coefficient $\gamma$ to maintain the representational capacity of the model. However, RMSNorm discards the input norm information in forward pass and a static scaling factor $\gamma$ may be insufficient to accommodate the wide variability of input data and distributional shifts, thereby limiting further performance improvements, particularly in zero-shot scenarios that large language models routinely encounter. To address this limitation, we propose SeeDNorm, which enhances the representational capability of the model by dynamically adjusting the scaling coefficient based on the current input, thereby preserving the input norm information and enabling data-dependent, self-rescaled dynamic normalization. During backpropagation, SeeDNorm retains the ability of RMSNorm to dynamically adjust gradient according to the input norm. We provide a detailed analysis of the training optimization for SeedNorm and proposed corresponding solutions to address potential instability issues that may arise when applying SeeDNorm. We validate the effectiveness of SeeDNorm across models of varying sizes in large language model pre-training as well as supervised and unsupervised computer vision tasks. By introducing a minimal number of parameters and with neglligible impact on model efficiency, SeeDNorm achieves consistently superior performance compared to previously commonly used normalization layers such as RMSNorm and LayerNorm, as well as element-wise activation alternatives to normalization layers like DyT.
Abstract:Multi-modal large language models have demonstrated remarkable zero-shot abilities and powerful image-understanding capabilities. However, the existing open-source multi-modal models suffer from the weak capability of multi-turn interaction, especially for long contexts. To address the issue, we first introduce a context modeling module, termed ContextQFormer, which utilizes a memory block to enhance the presentation of contextual information. Furthermore, to facilitate further research, we carefully build a new multi-turn multi-modal dialogue dataset (TMDialog) for pre-training, instruction-tuning, and evaluation, which will be open-sourced lately. Compared with other multi-modal dialogue datasets, TMDialog contains longer conversations, which supports the research of multi-turn multi-modal dialogue. In addition, ContextQFormer is compared with three baselines on TMDialog and experimental results illustrate that ContextQFormer achieves an improvement of 2%-4% in available rate over baselines.
Abstract:Generating 3D human motion from text descriptions remains challenging due to the diverse and complex nature of human motion. While existing methods excel within the training distribution, they often struggle with out-of-distribution motions, limiting their applicability in real-world scenarios. Existing VQVAE-based methods often fail to represent novel motions faithfully using discrete tokens, which hampers their ability to generalize beyond seen data. Meanwhile, diffusion-based methods operating on continuous representations often lack fine-grained control over individual frames. To address these challenges, we propose a robust motion generation framework MoMADiff, which combines masked modeling with diffusion processes to generate motion using frame-level continuous representations. Our model supports flexible user-provided keyframe specification, enabling precise control over both spatial and temporal aspects of motion synthesis. MoMADiff demonstrates strong generalization capability on novel text-to-motion datasets with sparse keyframes as motion prompts. Extensive experiments on two held-out datasets and two standard benchmarks show that our method consistently outperforms state-of-the-art models in motion quality, instruction fidelity, and keyframe adherence.
Abstract:Video Comment Art enhances user engagement by providing creative content that conveys humor, satire, or emotional resonance, requiring a nuanced and comprehensive grasp of cultural and contextual subtleties. Although Multimodal Large Language Models (MLLMs) and Chain-of-Thought (CoT) have demonstrated strong reasoning abilities in STEM tasks (e.g. mathematics and coding), they still struggle to generate creative expressions such as resonant jokes and insightful satire. Moreover, existing benchmarks are constrained by their limited modalities and insufficient categories, hindering the exploration of comprehensive creativity in video-based Comment Art creation. To address these limitations, we introduce GODBench, a novel benchmark that integrates video and text modalities to systematically evaluate MLLMs' abilities to compose Comment Art. Furthermore, inspired by the propagation patterns of waves in physics, we propose Ripple of Thought (RoT), a multi-step reasoning framework designed to enhance the creativity of MLLMs. Extensive experiments reveal that existing MLLMs and CoT methods still face significant challenges in understanding and generating creative video comments. In contrast, RoT provides an effective approach to improve creative composing, highlighting its potential to drive meaningful advancements in MLLM-based creativity. GODBench is publicly available at https://github.com/stan-lei/GODBench-ACL2025.




Abstract:With the rapid development of Multi-modal Large Language Models (MLLMs), an increasing number of benchmarks have been established to evaluate the video understanding capabilities of these models. However, these benchmarks focus on \textbf{standalone} videos and mainly assess ``visual elements'' like human actions and object states. In reality, contemporary videos often encompass complex and continuous narratives, typically presented as a \textbf{series}. To address this challenge, we propose \textbf{SeriesBench}, a benchmark consisting of 105 carefully curated narrative-driven series, covering 28 specialized tasks that require deep narrative understanding. Specifically, we first select a diverse set of drama series spanning various genres. Then, we introduce a novel long-span narrative annotation method, combined with a full-information transformation approach to convert manual annotations into diverse task formats. To further enhance model capacity for detailed analysis of plot structures and character relationships within series, we propose a novel narrative reasoning framework, \textbf{PC-DCoT}. Extensive results on \textbf{SeriesBench} indicate that existing MLLMs still face significant challenges in understanding narrative-driven series, while \textbf{PC-DCoT} enables these MLLMs to achieve performance improvements. Overall, our \textbf{SeriesBench} and \textbf{PC-DCoT} highlight the critical necessity of advancing model capabilities to understand narrative-driven series, guiding the future development of MLLMs. SeriesBench is publicly available at https://github.com/zackhxn/SeriesBench-CVPR2025.
Abstract:While current skeleton action recognition models demonstrate impressive performance on large-scale datasets, their adaptation to new application scenarios remains challenging. These challenges are particularly pronounced when facing new action categories, diverse performers, and varied skeleton layouts, leading to significant performance degeneration. Additionally, the high cost and difficulty of collecting skeleton data make large-scale data collection impractical. This paper studies one-shot and limited-scale learning settings to enable efficient adaptation with minimal data. Existing approaches often overlook the rich mutual information between labeled samples, resulting in sub-optimal performance in low-data scenarios. To boost the utility of labeled data, we identify the variability among performers and the commonality within each action as two key attributes. We present SkeletonX, a lightweight training pipeline that integrates seamlessly with existing GCN-based skeleton action recognizers, promoting effective training under limited labeled data. First, we propose a tailored sample pair construction strategy on two key attributes to form and aggregate sample pairs. Next, we develop a concise and effective feature aggregation module to process these pairs. Extensive experiments are conducted on NTU RGB+D, NTU RGB+D 120, and PKU-MMD with various GCN backbones, demonstrating that the pipeline effectively improves performance when trained from scratch with limited data. Moreover, it surpasses previous state-of-the-art methods in the one-shot setting, with only 1/10 of the parameters and much fewer FLOPs. The code and data are available at: https://github.com/zzysteve/SkeletonX




Abstract:Vision-Language Model (VLM) have gained widespread adoption in Open-Vocabulary (OV) object detection and segmentation tasks. Despite they have shown promise on OV-related tasks, their effectiveness in conventional vision tasks has thus far been unevaluated. In this work, we present the systematic review of VLM-based detection and segmentation, view VLM as the foundational model and conduct comprehensive evaluations across multiple downstream tasks for the first time: 1) The evaluation spans eight detection scenarios (closed-set detection, domain adaptation, crowded objects, etc.) and eight segmentation scenarios (few-shot, open-world, small object, etc.), revealing distinct performance advantages and limitations of various VLM architectures across tasks. 2) As for detection tasks, we evaluate VLMs under three finetuning granularities: \textit{zero prediction}, \textit{visual fine-tuning}, and \textit{text prompt}, and further analyze how different finetuning strategies impact performance under varied task. 3) Based on empirical findings, we provide in-depth analysis of the correlations between task characteristics, model architectures, and training methodologies, offering insights for future VLM design. 4) We believe that this work shall be valuable to the pattern recognition experts working in the fields of computer vision, multimodal learning, and vision foundation models by introducing them to the problem, and familiarizing them with the current status of the progress while providing promising directions for future research. A project associated with this review and evaluation has been created at https://github.com/better-chao/perceptual_abilities_evaluation.