Abstract:Ensembles of generative large language models (LLMs) can integrate the strengths of different LLMs to compensate for the limitations of individual models. However, recent work has focused on training an additional fusion model to combine complete responses from multiple LLMs, failing to tap into their collaborative potential to generate higher-quality responses. Moreover, as the additional fusion model is trained on a specialized dataset, these methods struggle with generalizing to open-domain queries from online users. In this paper, we propose SpecFuse, a novel ensemble framework that outputs the fused result by iteratively producing the next segment through collaboration among LLMs. This is achieved through cyclic execution of its inference and verification components. In each round, the inference component invokes each base LLM to generate candidate segments in parallel, and the verify component calls these LLMs again to predict the ranking of the segments. The top-ranked segment is then broadcast to all LLMs, encouraging them to generate higher-quality segments in the next round. This approach also allows the base LLMs to be plug-and-play, without any training or adaptation, avoiding generalization limitations. Furthermore, to conserve computational resources, we propose a model exit mechanism that dynamically excludes models exhibiting poor performance in previous rounds during each query response. In this way, it effectively reduces the number of model calls while maintaining overall performance.
Abstract:Occupancy prediction has garnered increasing attention in recent years for its comprehensive fine-grained environmental representation and strong generalization to open-set objects. However, cumbersome voxel features and 3D convolution operations inevitably introduce large overheads in both memory and computation, obstructing the deployment of occupancy prediction approaches in real-time autonomous driving systems. Although some methods attempt to efficiently predict 3D occupancy from 2D Bird's-Eye-View (BEV) features through the Channel-to-Height mechanism, BEV features are insufficient to store all the height information of the scene, which limits performance. This paper proposes LightOcc, an innovative 3D occupancy prediction framework that leverages Lightweight Spatial Embedding to effectively supplement the height clues for the BEV-based representation while maintaining its deployability. Firstly, Global Spatial Sampling is used to obtain the Single-Channel Occupancy from multi-view depth distribution. Spatial-to-Channel mechanism then takes the arbitrary spatial dimension of Single-Channel Occupancy as the feature dimension and extracts Tri-Perspective Views (TPV) Embeddings by 2D convolution. Finally, TPV Embeddings will interact with each other by Lightweight TPV Interaction module to obtain the Spatial Embedding that is optimal supplementary to BEV features. Sufficient experimental results show that LightOcc significantly increases the prediction accuracy of the baseline and achieves state-of-the-art performance on the Occ3D-nuScenes benchmark.
Abstract:Developing accurate and efficient detectors for drone imagery is challenging due to the inherent complexity of aerial scenes. While some existing methods aim to achieve high accuracy by utilizing larger models, their computational cost is prohibitive for drones. Recently, Knowledge Distillation (KD) has shown promising potential for maintaining satisfactory accuracy while significantly compressing models in general object detection. Considering the advantages of KD, this paper presents the first attempt to adapt it to object detection on drone imagery and addresses two intrinsic issues: (1) low foreground-background ratio and (2) small instances and complex backgrounds, which lead to inadequate training, resulting insufficient distillation. Therefore, we propose a task-wise Lightweight Mutual Lifting (Light-ML) module with a Centerness-based Instance-aware Distillation (CID) strategy. The Light-ML module mutually harmonizes the classification and localization branches by channel shuffling and convolution, integrating teacher supervision across different tasks during back-propagation, thus facilitating training the student model. The CID strategy extracts valuable regions surrounding instances through the centerness of proposals, enhancing distillation efficacy. Experiments on the VisDrone, UAVDT, and COCO benchmarks demonstrate that the proposed approach promotes the accuracies of existing state-of-the-art KD methods with comparable computational requirements. Codes will be available upon acceptance.
Abstract:Bird's-Eye-View (BEV) representation has emerged as a mainstream paradigm for multi-view 3D object detection, demonstrating impressive perceptual capabilities. However, existing methods overlook the geometric quality of BEV representation, leaving it in a low-resolution state and failing to restore the authentic geometric information of the scene. In this paper, we identify the reasons why previous approaches are constrained by low BEV representation resolution and propose Radial-Cartesian BEV Sampling (RC-Sampling), enabling efficient generation of high-resolution dense BEV representations without the need for complex operators. Additionally, we design a novel In-Box Label to substitute the traditional depth label generated from the LiDAR points. This label reflects the actual geometric structure of objects rather than just their surfaces, injecting real-world geometric information into the BEV representation. Furthermore, in conjunction with the In-Box Label, a Centroid-Aware Inner Loss (CAI Loss) is developed to capture the fine-grained inner geometric structure of objects. Finally, we integrate the aforementioned modules into a novel multi-view 3D object detection framework, dubbed GeoBEV. Extensive experiments on the nuScenes dataset exhibit that GeoBEV achieves state-of-the-art performance, highlighting its effectiveness.
Abstract:In recent years, Few-Shot Object Detection (FSOD) has gained widespread attention and made significant progress due to its ability to build models with a good generalization power using extremely limited annotated data. The fine-tuning based paradigm is currently dominating this field, where detectors are initially pre-trained on base classes with sufficient samples and then fine-tuned on novel ones with few samples, but the scarcity of labeled samples of novel classes greatly interferes precisely fitting their data distribution, thus hampering the performance. To address this issue, we propose a new framework for FSOD, namely Prototype-based Soft-labels and Test-Time Learning (PS-TTL). Specifically, we design a Test-Time Learning (TTL) module that employs a mean-teacher network for self-training to discover novel instances from test data, allowing detectors to learn better representations and classifiers for novel classes. Furthermore, we notice that even though relatively low-confidence pseudo-labels exhibit classification confusion, they still tend to recall foreground. We thus develop a Prototype-based Soft-labels (PS) strategy through assessing similarities between low-confidence pseudo-labels and category prototypes as soft-labels to unleash their potential, which substantially mitigates the constraints posed by few-shot samples. Extensive experiments on both the VOC and COCO benchmarks show that PS-TTL achieves the state-of-the-art, highlighting its effectiveness. The code and model are available at https://github.com/gaoyingjay/PS-TTL.
Abstract:Although multi-view 3D object detection based on the Bird's-Eye-View (BEV) paradigm has garnered widespread attention as an economical and deployment-friendly perception solution for autonomous driving, there is still a performance gap compared to LiDAR-based methods. In recent years, several cross-modal distillation methods have been proposed to transfer beneficial information from teacher models to student models, with the aim of enhancing performance. However, these methods face challenges due to discrepancies in feature distribution originating from different data modalities and network structures, making knowledge transfer exceptionally challenging. In this paper, we propose a Foreground Self-Distillation (FSD) scheme that effectively avoids the issue of distribution discrepancies, maintaining remarkable distillation effects without the need for pre-trained teacher models or cumbersome distillation strategies. Additionally, we design two Point Cloud Intensification (PCI) strategies to compensate for the sparsity of point clouds by frame combination and pseudo point assignment. Finally, we develop a Multi-Scale Foreground Enhancement (MSFE) module to extract and fuse multi-scale foreground features by predicted elliptical Gaussian heatmap, further improving the model's performance. We integrate all the above innovations into a unified framework named FSD-BEV. Extensive experiments on the nuScenes dataset exhibit that FSD-BEV achieves state-of-the-art performance, highlighting its effectiveness. The code and models are available at: https://github.com/CocoBoom/fsd-bev.
Abstract:Existing 3D object detection suffers from expensive annotation costs and poor transferability to unknown data due to the domain gap, Unsupervised Domain Adaptation (UDA) aims to generalize detection models trained in labeled source domains to perform robustly on unexplored target domains, providing a promising solution for cross-domain 3D object detection. Although Self-Training (ST) based cross-domain 3D detection methods with the assistance of pseudo-labeling techniques have achieved remarkable progress, they still face the issue of low-quality pseudo-labels when there are significant domain disparities due to the absence of a process for feature distribution alignment. While Adversarial Learning (AL) based methods can effectively align the feature distributions of the source and target domains, the inability to obtain labels in the target domain forces the adoption of asymmetric optimization losses, resulting in a challenging issue of source domain bias. To overcome these limitations, we propose a novel unsupervised domain adaptation framework for 3D object detection via collaborating ST and AL, dubbed as STAL3D, unleashing the complementary advantages of pseudo labels and feature distribution alignment. Additionally, a Background Suppression Adversarial Learning (BS-AL) module and a Scale Filtering Module (SFM) are designed tailored for 3D cross-domain scenes, effectively alleviating the issues of the large proportion of background interference and source domain size bias. Our STAL3D achieves state-of-the-art performance on multiple cross-domain tasks and even surpasses the Oracle results on Waymo $\rightarrow$ KITTI and Waymo $\rightarrow$ KITTI-rain.
Abstract:In recent years, autonomous driving has garnered escalating attention for its potential to relieve drivers' burdens and improve driving safety. Vision-based 3D occupancy prediction, which predicts the spatial occupancy status and semantics of 3D voxel grids around the autonomous vehicle from image inputs, is an emerging perception task suitable for cost-effective perception system of autonomous driving. Although numerous studies have demonstrated the greater advantages of 3D occupancy prediction over object-centric perception tasks, there is still a lack of a dedicated review focusing on this rapidly developing field. In this paper, we first introduce the background of vision-based 3D occupancy prediction and discuss the challenges in this task. Secondly, we conduct a comprehensive survey of the progress in vision-based 3D occupancy prediction from three aspects: feature enhancement, deployment friendliness and label efficiency, and provide an in-depth analysis of the potentials and challenges of each category of methods. Finally, we present a summary of prevailing research trends and propose some inspiring future outlooks. To provide a valuable reference for researchers, a regularly updated collection of related papers, datasets, and codes is organized at https://github.com/zya3d/Awesome-3D-Occupancy-Prediction.
Abstract:The embedding-based retrieval (EBR) approach is widely used in mainstream search engine retrieval systems and is crucial in recent retrieval-augmented methods for eliminating LLM illusions. However, existing EBR models often face the "semantic drift" problem and insufficient focus on key information, leading to a low adoption rate of retrieval results in subsequent steps. This issue is especially noticeable in real-time search scenarios, where the various expressions of popular events on the Internet make real-time retrieval heavily reliant on crucial event information. To tackle this problem, this paper proposes a novel approach called EER, which enhances real-time retrieval performance by improving the dual-encoder model of traditional EBR. We incorporate contrastive learning to accompany pairwise learning for encoder optimization. Furthermore, to strengthen the focus on critical event information in events, we include a decoder module after the document encoder, introduce a generative event triplet extraction scheme based on prompt-tuning, and correlate the events with query encoder optimization through comparative learning. This decoder module can be removed during inference. Extensive experiments demonstrate that EER can significantly improve the real-time search retrieval performance. We believe that this approach will provide new perspectives in the field of information retrieval. The codes and dataset are available at https://github.com/open-event-hub/Event-enhanced_Retrieval .
Abstract:NeRF's high-quality scene synthesis capability was quickly accepted by scholars in the years after it was proposed, and significant progress has been made in 3D scene representation and synthesis. However, the high computational cost limits intuitive and efficient editing of scenes, making NeRF's development in the scene editing field facing many challenges. This paper reviews the preliminary explorations of scholars on NeRF in the scene or object editing field in recent years, mainly changing the shape and texture of scenes or objects in new synthesized scenes; through the combination of residual models such as GaN and Transformer with NeRF, the generalization ability of NeRF scene editing has been further expanded, including realizing real-time new perspective editing feedback, multimodal editing of text synthesized 3D scenes, 4D synthesis performance, and in-depth exploration in light and shadow editing, initially achieving optimization of indirect touch editing and detail representation in complex scenes. Currently, most NeRF editing methods focus on the touch points and materials of indirect points, but when dealing with more complex or larger 3D scenes, it is difficult to balance accuracy, breadth, efficiency, and quality. Overcoming these challenges may become the direction of future NeRF 3D scene editing technology.