Abstract:Occupancy prediction has garnered increasing attention in recent years for its comprehensive fine-grained environmental representation and strong generalization to open-set objects. However, cumbersome voxel features and 3D convolution operations inevitably introduce large overheads in both memory and computation, obstructing the deployment of occupancy prediction approaches in real-time autonomous driving systems. Although some methods attempt to efficiently predict 3D occupancy from 2D Bird's-Eye-View (BEV) features through the Channel-to-Height mechanism, BEV features are insufficient to store all the height information of the scene, which limits performance. This paper proposes LightOcc, an innovative 3D occupancy prediction framework that leverages Lightweight Spatial Embedding to effectively supplement the height clues for the BEV-based representation while maintaining its deployability. Firstly, Global Spatial Sampling is used to obtain the Single-Channel Occupancy from multi-view depth distribution. Spatial-to-Channel mechanism then takes the arbitrary spatial dimension of Single-Channel Occupancy as the feature dimension and extracts Tri-Perspective Views (TPV) Embeddings by 2D convolution. Finally, TPV Embeddings will interact with each other by Lightweight TPV Interaction module to obtain the Spatial Embedding that is optimal supplementary to BEV features. Sufficient experimental results show that LightOcc significantly increases the prediction accuracy of the baseline and achieves state-of-the-art performance on the Occ3D-nuScenes benchmark.
Abstract:Incremental anomaly detection sequentially recognizes abnormal regions in novel categories for dynamic industrial scenarios. This remains highly challenging due to knowledge overwriting and feature conflicts, leading to catastrophic forgetting. In this work, we propose ONER, an end-to-end ONline Experience Replay method, which efficiently mitigates catastrophic forgetting while adapting to new tasks with minimal cost. Specifically, our framework utilizes two types of experiences from past tasks: decomposed prompts and semantic prototypes, addressing both model parameter updates and feature optimization. The decomposed prompts consist of learnable components that assemble to produce attention-conditioned prompts. These prompts reuse previously learned knowledge, enabling model to learn novel tasks effectively. The semantic prototypes operate at both pixel and image levels, performing regularization in the latent feature space to prevent forgetting across various tasks. Extensive experiments demonstrate that our method achieves state-of-the-art performance in incremental anomaly detection with significantly reduced forgetting, as well as efficiently adapting to new categories with minimal costs. These results confirm the efficiency and stability of ONER, making it a powerful solution for real-world applications.
Abstract:The success of Large Language Models (LLMs) is inherently linked to the availability of vast, diverse, and high-quality data for training and evaluation. However, the growth rate of high-quality data is significantly outpaced by the expansion of training datasets, leading to a looming data exhaustion crisis. This underscores the urgent need to enhance data efficiency and explore new data sources. In this context, synthetic data has emerged as a promising solution. Currently, data generation primarily consists of two major approaches: data augmentation and synthesis. This paper comprehensively reviews and summarizes data generation techniques throughout the lifecycle of LLMs, including data preparation, pre-training, fine-tuning, instruction-tuning, preference alignment, and applications. Furthermore, We discuss the current constraints faced by these methods and investigate potential pathways for future development and research. Our aspiration is to equip researchers with a clear understanding of these methodologies, enabling them to swiftly identify appropriate data generation strategies in the construction of LLMs, while providing valuable insights for future exploration.
Abstract:Bird's-Eye-View (BEV) representation has emerged as a mainstream paradigm for multi-view 3D object detection, demonstrating impressive perceptual capabilities. However, existing methods overlook the geometric quality of BEV representation, leaving it in a low-resolution state and failing to restore the authentic geometric information of the scene. In this paper, we identify the reasons why previous approaches are constrained by low BEV representation resolution and propose Radial-Cartesian BEV Sampling (RC-Sampling), enabling efficient generation of high-resolution dense BEV representations without the need for complex operators. Additionally, we design a novel In-Box Label to substitute the traditional depth label generated from the LiDAR points. This label reflects the actual geometric structure of objects rather than just their surfaces, injecting real-world geometric information into the BEV representation. Furthermore, in conjunction with the In-Box Label, a Centroid-Aware Inner Loss (CAI Loss) is developed to capture the fine-grained inner geometric structure of objects. Finally, we integrate the aforementioned modules into a novel multi-view 3D object detection framework, dubbed GeoBEV. Extensive experiments on the nuScenes dataset exhibit that GeoBEV achieves state-of-the-art performance, highlighting its effectiveness.
Abstract:Gait recognition has attracted increasing attention from academia and industry as a human recognition technology from a distance in non-intrusive ways without requiring cooperation. Although advanced methods have achieved impressive success in lab scenarios, most of them perform poorly in the wild. Recently, some Convolution Neural Networks (ConvNets) based methods have been proposed to address the issue of gait recognition in the wild. However, the temporal receptive field obtained by convolution operations is limited for long gait sequences. If directly replacing convolution blocks with visual transformer blocks, the model may not enhance a local temporal receptive field, which is important for covering a complete gait cycle. To address this issue, we design a Global-Local Temporal Receptive Field Network (GLGait). GLGait employs a Global-Local Temporal Module (GLTM) to establish a global-local temporal receptive field, which mainly consists of a Pseudo Global Temporal Self-Attention (PGTA) and a temporal convolution operation. Specifically, PGTA is used to obtain a pseudo global temporal receptive field with less memory and computation complexity compared with a multi-head self-attention (MHSA). The temporal convolution operation is used to enhance the local temporal receptive field. Besides, it can also aggregate pseudo global temporal receptive field to a true holistic temporal receptive field. Furthermore, we also propose a Center-Augmented Triplet Loss (CTL) in GLGait to reduce the intra-class distance and expand the positive samples in the training stage. Extensive experiments show that our method obtains state-of-the-art results on in-the-wild datasets, $i.e.$, Gait3D and GREW. The code is available at https://github.com/bgdpgz/GLGait.
Abstract:Vision Transformer (ViT) has become one of the most prevailing fundamental backbone networks in the computer vision community. Despite the high accuracy, deploying it in real applications raises critical challenges including the high computational cost and inference latency. Recently, the post-training quantization (PTQ) technique has emerged as a promising way to enhance ViT's efficiency. Nevertheless, existing PTQ approaches for ViT suffer from the inflexible quantization on the post-Softmax and post-GELU activations that obey the power-law-like distributions. To address these issues, we propose a novel non-uniform quantizer, dubbed the Adaptive Logarithm AdaLog (AdaLog) quantizer. It optimizes the logarithmic base to accommodate the power-law-like distribution of activations, while simultaneously allowing for hardware-friendly quantization and de-quantization. By employing the bias reparameterization, the AdaLog quantizer is applicable to both the post-Softmax and post-GELU activations. Moreover, we develop an efficient Fast Progressive Combining Search (FPCS) strategy to determine the optimal logarithm base for AdaLog, as well as the scaling factors and zero points for the uniform quantizers. Extensive experimental results on public benchmarks demonstrate the effectiveness of our approach for various ViT-based architectures and vision tasks including classification, object detection, and instance segmentation. Code is available at https://github.com/GoatWu/AdaLog.
Abstract:Although multi-view 3D object detection based on the Bird's-Eye-View (BEV) paradigm has garnered widespread attention as an economical and deployment-friendly perception solution for autonomous driving, there is still a performance gap compared to LiDAR-based methods. In recent years, several cross-modal distillation methods have been proposed to transfer beneficial information from teacher models to student models, with the aim of enhancing performance. However, these methods face challenges due to discrepancies in feature distribution originating from different data modalities and network structures, making knowledge transfer exceptionally challenging. In this paper, we propose a Foreground Self-Distillation (FSD) scheme that effectively avoids the issue of distribution discrepancies, maintaining remarkable distillation effects without the need for pre-trained teacher models or cumbersome distillation strategies. Additionally, we design two Point Cloud Intensification (PCI) strategies to compensate for the sparsity of point clouds by frame combination and pseudo point assignment. Finally, we develop a Multi-Scale Foreground Enhancement (MSFE) module to extract and fuse multi-scale foreground features by predicted elliptical Gaussian heatmap, further improving the model's performance. We integrate all the above innovations into a unified framework named FSD-BEV. Extensive experiments on the nuScenes dataset exhibit that FSD-BEV achieves state-of-the-art performance, highlighting its effectiveness. The code and models are available at: https://github.com/CocoBoom/fsd-bev.
Abstract:Detection pre-training methods for the DETR series detector have been extensively studied in natural scenes, e.g., DETReg. However, the detection pre-training remains unexplored in remote sensing scenes. In existing pre-training methods, alignment between object embeddings extracted from a pre-trained backbone and detector features is significant. However, due to differences in feature extraction methods, a pronounced feature discrepancy still exists and hinders the pre-training performance. The remote sensing images with complex environments and more densely distributed objects exacerbate the discrepancy. In this work, we propose a novel Mutually optimizing pre-training framework for remote sensing object Detection, dubbed as MutDet. In MutDet, we propose a systemic solution against this challenge. Firstly, we propose a mutual enhancement module, which fuses the object embeddings and detector features bidirectionally in the last encoder layer, enhancing their information interaction.Secondly, contrastive alignment loss is employed to guide this alignment process softly and simultaneously enhances detector features' discriminativity. Finally, we design an auxiliary siamese head to mitigate the task gap arising from the introduction of enhancement module. Comprehensive experiments on various settings show new state-of-the-art transfer performance. The improvement is particularly pronounced when data quantity is limited. When using 10% of the DIOR-R data, MutDet improves DetReg by 6.1% in AP50. Codes and models are available at: https://github.com/floatingstarZ/MutDet.
Abstract:Few-shot object detection~(FSOD), which aims to detect novel objects with limited annotated instances, has made significant progress in recent years. However, existing methods still suffer from biased representations, especially for novel classes in extremely low-shot scenarios. During fine-tuning, a novel class may exploit knowledge from similar base classes to construct its own feature distribution, leading to classification confusion and performance degradation. To address these challenges, we propose a fine-tuning based FSOD framework that utilizes semantic embeddings for better detection. In our proposed method, we align the visual features with class name embeddings and replace the linear classifier with our semantic similarity classifier. Our method trains each region proposal to converge to the corresponding class embedding. Furthermore, we introduce a multimodal feature fusion to augment the vision-language communication, enabling a novel class to draw support explicitly from well-trained similar base classes. To prevent class confusion, we propose a semantic-aware max-margin loss, which adaptively applies a margin beyond similar classes. As a result, our method allows each novel class to construct a compact feature space without being confused with similar base classes. Extensive experiments on Pascal VOC and MS COCO demonstrate the superiority of our method.
Abstract:Scene Graph Generation (SGG) aims to identify entities and predict the relationship triplets \textit{\textless subject, predicate, object\textgreater } in visual scenes. Given the prevalence of large visual variations of subject-object pairs even in the same predicate, it can be quite challenging to model and refine predicate representations directly across such pairs, which is however a common strategy adopted by most existing SGG methods. We observe that visual variations within the identical triplet are relatively small and certain relation cues are shared in the same type of triplet, which can potentially facilitate the relation learning in SGG. Moreover, for the long-tail problem widely studied in SGG task, it is also crucial to deal with the limited types and quantity of triplets in tail predicates. Accordingly, in this paper, we propose a Dual-granularity Relation Modeling (DRM) network to leverage fine-grained triplet cues besides the coarse-grained predicate ones. DRM utilizes contexts and semantics of predicate and triplet with Dual-granularity Constraints, generating compact and balanced representations from two perspectives to facilitate relation recognition. Furthermore, a Dual-granularity Knowledge Transfer (DKT) strategy is introduced to transfer variation from head predicates/triplets to tail ones, aiming to enrich the pattern diversity of tail classes to alleviate the long-tail problem. Extensive experiments demonstrate the effectiveness of our method, which establishes new state-of-the-art performance on Visual Genome, Open Image, and GQA datasets. Our code is available at \url{https://github.com/jkli1998/DRM}