Abstract:Deep neural networks and other modern machine learning models are often susceptible to adversarial attacks. Indeed, an adversary may often be able to change a model's prediction through a small, directed perturbation of the model's input - an issue in safety-critical applications. Adversarially robust machine learning is usually based on a minmax optimisation problem that minimises the machine learning loss under maximisation-based adversarial attacks. In this work, we study adversaries that determine their attack using a Bayesian statistical approach rather than maximisation. The resulting Bayesian adversarial robustness problem is a relaxation of the usual minmax problem. To solve this problem, we propose Abram - a continuous-time particle system that shall approximate the gradient flow corresponding to the underlying learning problem. We show that Abram approximates a McKean-Vlasov process and justify the use of Abram by giving assumptions under which the McKean-Vlasov process finds the minimiser of the Bayesian adversarial robustness problem. We discuss two ways to discretise Abram and show its suitability in benchmark adversarial deep learning experiments.
Abstract:Detecting objects from aerial images poses significant challenges due to the following factors: 1) Aerial images typically have very large sizes, generally with millions or even hundreds of millions of pixels, while computational resources are limited. 2) Small object size leads to insufficient information for effective detection. 3) Non-uniform object distribution leads to computational resource wastage. To address these issues, we propose YOLC (You Only Look Clusters), an efficient and effective framework that builds on an anchor-free object detector, CenterNet. To overcome the challenges posed by large-scale images and non-uniform object distribution, we introduce a Local Scale Module (LSM) that adaptively searches cluster regions for zooming in for accurate detection. Additionally, we modify the regression loss using Gaussian Wasserstein distance (GWD) to obtain high-quality bounding boxes. Deformable convolution and refinement methods are employed in the detection head to enhance the detection of small objects. We perform extensive experiments on two aerial image datasets, including Visdrone2019 and UAVDT, to demonstrate the effectiveness and superiority of our proposed approach.
Abstract:Edge detection is a long standing problem in computer vision. Recent deep learning based algorithms achieve state of-the-art performance in publicly available datasets. Despite the efficiency of these algorithms, their performance, however, relies heavily on the pretrained weights of the backbone network on the ImageNet dataset. This limits heavily the design space of deep learning based edge detectors. Whenever we want to devise a new model, we have to train this new model on the ImageNet dataset first, and then fine tune the model using the edge detection datasets. The comparison would be unfair otherwise. However, it is usually not feasible for many researchers to train a model on the ImageNet dataset due to the limited computation resources. In this work, we study the performance that can be achieved by state-of-the-art deep learning based edge detectors in publicly available datasets when they are trained from scratch, and devise a new network architecture, the multi-stream and multi scale fusion net (msmsfnet), for edge detection. We show in our experiments that by training all models from scratch to ensure the fairness of comparison, out model outperforms state-of-the art deep learning based edge detectors in three publicly available datasets.
Abstract:Perception of the driving environment is critical for collision avoidance and route planning to ensure driving safety. Cooperative perception has been widely studied as an effective approach to addressing the shortcomings of single-vehicle perception. However, the practical limitations of vehicle-to-vehicle (V2V) communications have not been adequately investigated. In particular, current cooperative fusion models rely on supervised models and do not address dynamic performance degradation caused by arbitrary channel impairments. In this paper, a self-supervised adaptive weighting model is proposed for intermediate fusion to mitigate the adverse effects of channel distortion. The performance of cooperative perception is investigated in different system settings. Rician fading and imperfect channel state information (CSI) are also considered. Numerical results demonstrate that the proposed adaptive weighting algorithm significantly outperforms the benchmarks without weighting. Visualization examples validate that the proposed weighting algorithm can flexibly adapt to various channel conditions. Moreover, the adaptive weighting algorithm demonstrates good generalization to untrained channels and test datasets from different domains.
Abstract:Deep learning (DL) has shown great potential in revolutionizing the traditional communications system. Many applications in communications have adopted DL techniques due to their powerful representation ability. However, the learning-based methods can be dependent on the training dataset and perform worse on unseen interference due to limited model generalizability and complexity. In this paper, we consider the semantic communication (SemCom) system with multiple users, where there is a limited number of training samples and unexpected interference. To improve the model generalization ability and reduce the model size, we propose a knowledge distillation (KD) based system where Transformer based encoder-decoder is implemented as the semantic encoder-decoder and fully connected neural networks are implemented as the channel encoder-decoder. Specifically, four types of knowledge transfer and model compression are analyzed. Important system and model parameters are considered, including the level of noise and interference, the number of interfering users and the size of the encoder and decoder. Numerical results demonstrate that KD significantly improves the robustness and the generalization ability when applied to unexpected interference, and it reduces the performance loss when compressing the model size.
Abstract:Cooperative perception has been widely used in autonomous driving to alleviate the inherent limitation of single automated vehicle perception. To enable cooperation, vehicle-to-vehicle (V2V) communication plays an indispensable role. This work analyzes the performance of cooperative perception accounting for communications channel impairments. Different fusion methods and channel impairments are evaluated. A new late fusion scheme is proposed to leverage the robustness of intermediate features. In order to compress the data size incurred by cooperation, a convolution neural network-based autoencoder is adopted. Numerical results demonstrate that intermediate fusion is more robust to channel impairments than early fusion and late fusion, when the SNR is greater than 0 dB. Also, the proposed fusion scheme outperforms the conventional late fusion using detection outputs, and autoencoder provides a good compromise between detection accuracy and bandwidth usage.
Abstract:The Stochastic Gradient Langevin Dynamics (SGLD) are popularly used to approximate Bayesian posterior distributions in statistical learning procedures with large-scale data. As opposed to many usual Markov chain Monte Carlo (MCMC) algorithms, SGLD is not stationary with respect to the posterior distribution; two sources of error appear: The first error is introduced by an Euler--Maruyama discretisation of a Langevin diffusion process, the second error comes from the data subsampling that enables its use in large-scale data settings. In this work, we consider an idealised version of SGLD to analyse the method's pure subsampling error that we then see as a best-case error for diffusion-based subsampling MCMC methods. Indeed, we introduce and study the Stochastic Gradient Langevin Diffusion (SGLDiff), a continuous-time Markov process that follows the Langevin diffusion corresponding to a data subset and switches this data subset after exponential waiting times. There, we show that the Wasserstein distance between the posterior and the limiting distribution of SGLDiff is bounded above by a fractional power of the mean waiting time. Importantly, this fractional power does not depend on the dimension of the state space. We bring our results into context with other analyses of SGLD.
Abstract:The training of deep neural networks and other modern machine learning models usually consists in solving non-convex optimisation problems that are high-dimensional and subject to large-scale data. Here, momentum-based stochastic optimisation algorithms have become especially popular in recent years. The stochasticity arises from data subsampling which reduces computational cost. Moreover, both, momentum and stochasticity are supposed to help the algorithm to overcome local minimisers and, hopefully, converge globally. Theoretically, this combination of stochasticity and momentum is badly understood. In this work, we propose and analyse a continuous-time model for stochastic gradient descent with momentum. This model is a piecewise-deterministic Markov process that represents the particle movement by an underdamped dynamical system and the data subsampling through a stochastic switching of the dynamical system. In our analysis, we investigate longtime limits, the subsampling-to-no-subsampling limit, and the momentum-to-no-momentum limit. We are particularly interested in the case of reducing the momentum over time: intuitively, the momentum helps to overcome local minimisers in the initial phase of the algorithm, but prohibits fast convergence to a global minimiser later. Under convexity assumptions, we show convergence of our dynamical system to the global minimiser when reducing momentum over time and let the subsampling rate go to infinity. We then propose a stable, symplectic discretisation scheme to construct an algorithm from our continuous-time dynamical system. In numerical experiments, we study our discretisation scheme in convex and non-convex test problems. Additionally, we train a convolutional neural network to solve the CIFAR-10 image classification problem. Here, our algorithm reaches competitive results compared to stochastic gradient descent with momentum.
Abstract:Optimization problems with continuous data appear in, e.g., robust machine learning, functional data analysis, and variational inference. Here, the target function is given as an integral over a family of (continuously) indexed target functions - integrated with respect to a probability measure. Such problems can often be solved by stochastic optimization methods: performing optimization steps with respect to the indexed target function with randomly switched indices. In this work, we study a continuous-time variant of the stochastic gradient descent algorithm for optimization problems with continuous data. This so-called stochastic gradient process consists in a gradient flow minimizing an indexed target function that is coupled with a continuous-time index process determining the index. Index processes are, e.g., reflected diffusions, pure jump processes, or other L\'evy processes on compact spaces. Thus, we study multiple sampling patterns for the continuous data space and allow for data simulated or streamed at runtime of the algorithm. We analyze the approximation properties of the stochastic gradient process and study its longtime behavior and ergodicity under constant and decreasing learning rates. We end with illustrating the applicability of the stochastic gradient process in a polynomial regression problem with noisy functional data, as well as in a physics-informed neural network.
Abstract:Nowadays, Deep Learning as a service can be deployed in Internet of Things (IoT) to provide smart services and sensor data processing. However, recent research has revealed that some Deep Neural Networks (DNN) can be easily misled by adding relatively small but adversarial perturbations to the input (e.g., pixel mutation in input images). One challenge in defending DNN against these attacks is to efficiently identifying and filtering out the adversarial pixels. The state-of-the-art defense strategies with good robustness often require additional model training for specific attacks. To reduce the computational cost without loss of generality, we present a defense strategy called a progressive defense against adversarial attacks (PDAAA) for efficiently and effectively filtering out the adversarial pixel mutations, which could mislead the neural network towards erroneous outputs, without a-priori knowledge about the attack type. We evaluated our progressive defense strategy against various attack methods on two well-known datasets. The result shows it outperforms the state-of-the-art while reducing the cost of model training by 50% on average.