Abstract:Video-based dialogue systems, such as education assistants, have compelling application value, thereby garnering growing interest. However, the current video-based dialogue systems are limited by their reliance on a single dialogue type, which hinders their versatility in practical applications across a range of scenarios, including question-answering, emotional dialog, etc. In this paper, we identify this challenge as how to generate video-driven multilingual mixed-type dialogues. To mitigate this challenge, we propose a novel task and create a human-to-human video-driven multilingual mixed-type dialogue corpus, termed KwaiChat, containing a total of 93,209 videos and 246,080 dialogues, across 4 dialogue types, 30 domains, 4 languages, and 13 topics. Additionally, we establish baseline models on KwaiChat. An extensive analysis of 7 distinct LLMs on KwaiChat reveals that GPT-4o achieves the best performance but still cannot perform well in this situation even with the help of in-context learning and fine-tuning, which indicates that the task is not trivial and needs further research.
Abstract:Most medical dialogue systems assume that patients have clear goals (medicine querying, surgical operation querying, etc.) before medical consultation. However, in many real scenarios, due to the lack of medical knowledge, it is usually difficult for patients to determine clear goals with all necessary slots. In this paper, we identify this challenge as how to construct medical consultation dialogue systems to help patients clarify their goals. To mitigate this challenge, we propose a novel task and create a human-to-human mixed-type medical consultation dialogue corpus, termed MidMed, covering five dialogue types: task-oriented dialogue for diagnosis, recommendation, knowledge-grounded dialogue, QA, and chitchat. MidMed covers four departments (otorhinolaryngology, ophthalmology, skin, and digestive system), with 8,175 dialogues. Furthermore, we build baselines on MidMed and propose an instruction-guiding medical dialogue generation framework, termed InsMed, to address this task. Experimental results show the effectiveness of InsMed.