Abstract:Orthogonal matching pursuit (OMP) is a commonly used greedy algorithm for recovering sparse signals from compressed measurements. In this paper, we introduce a variant of the OMP algorithm to reduce the complexity of reconstructing a class of $K$-sparse signals $\boldsymbol{x} \in \mathbb{R}^{n}$ from measurements $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}$, where $\boldsymbol{A} \in \{0,1\}^{m \times n}$ is a sparse random combinatorial matrix with $d~(d \leq m/2)$ ones per column. The proposed algorithm, referred to as the confined OMP algorithm, utilizes the properties of $\boldsymbol{x}$ and $\boldsymbol{A}$ to remove much of the redundancy in the dictionary (also referred to as $\boldsymbol{A}$) and thus fewer column indices of $\boldsymbol{A}$ need to be identified. To this end, we first define a confined set $\Gamma$ with $|\Gamma| \leq n$ and then prove that the support of $\boldsymbol{x}$ is a subset of $\Gamma$ with probability 1 if the distributions of non-zero components of $\boldsymbol{x}$ satisfy a certain condition. During the process of the confined OMP algorithm, the possibly chosen column indices are strictly confined into the confined set $\Gamma$. We further develop lower bounds on the probability of exact recovery of $\boldsymbol{x}$ using OMP algorithm and confined OMP algorithm with $K$ iterations, respectively. The obtained theoretical results of confined OMP algorithm can be used to optimize the column degree $d$ of $\boldsymbol{A}$. Finally, experimental results show that the confined OMP algorithm is more efficient in reconstructing a class of sparse signals compared to the OMP algorithm.
Abstract:Recently, various parameter-efficient fine-tuning (PEFT) strategies for application to language models have been proposed and successfully implemented. However, this raises the question of whether PEFT, which only updates a limited set of model parameters, constitutes security vulnerabilities when confronted with weight-poisoning backdoor attacks. In this study, we show that PEFT is more susceptible to weight-poisoning backdoor attacks compared to the full-parameter fine-tuning method, with pre-defined triggers remaining exploitable and pre-defined targets maintaining high confidence, even after fine-tuning. Motivated by this insight, we developed a Poisoned Sample Identification Module (PSIM) leveraging PEFT, which identifies poisoned samples through confidence, providing robust defense against weight-poisoning backdoor attacks. Specifically, we leverage PEFT to train the PSIM with randomly reset sample labels. During the inference process, extreme confidence serves as an indicator for poisoned samples, while others are clean. We conduct experiments on text classification tasks, five fine-tuning strategies, and three weight-poisoning backdoor attack methods. Experiments show near 100% success rates for weight-poisoning backdoor attacks when utilizing PEFT. Furthermore, our defensive approach exhibits overall competitive performance in mitigating weight-poisoning backdoor attacks.
Abstract:In-context learning, a paradigm bridging the gap between pre-training and fine-tuning, has demonstrated high efficacy in several NLP tasks, especially in few-shot settings. Unlike traditional fine-tuning methods, in-context learning adapts pre-trained models to unseen tasks without updating any parameters. Despite being widely applied, in-context learning is vulnerable to malicious attacks. In this work, we raise security concerns regarding this paradigm. Our studies demonstrate that an attacker can manipulate the behavior of large language models by poisoning the demonstration context, without the need for fine-tuning the model. Specifically, we have designed a new backdoor attack method, named ICLAttack, to target large language models based on in-context learning. Our method encompasses two types of attacks: poisoning demonstration examples and poisoning prompts, which can make models behave in accordance with predefined intentions. ICLAttack does not require additional fine-tuning to implant a backdoor, thus preserving the model's generality. Furthermore, the poisoned examples are correctly labeled, enhancing the natural stealth of our attack method. Extensive experimental results across several language models, ranging in size from 1.3B to 40B parameters, demonstrate the effectiveness of our attack method, exemplified by a high average attack success rate of 95.0% across the three datasets on OPT models. Our findings highlight the vulnerabilities of language models, and we hope this work will raise awareness of the possible security threats associated with in-context learning.
Abstract:Affine frequency division multiplexing (AFDM) is an emerging multicarrier waveform that offers a potential solution for achieving reliable communication for time-varying channels. This paper proposes two maximum likelihood (ML) estimators of symbol time offset and carrier frequency offset for AFDM systems. The joint ML estimator evaluates the arrival time and frequency offset by comparing the correlations of samples. Moreover, we propose the stepwise ML estimator to reduce the complexity. The proposed estimators exploit the redundant information contained within the chirp-periodic prefix inherent in AFDM symbols, thus dispensing with any additional pilots. To further mitigate the intercarrier interference resulting from the residual frequency offset, we design a mirror-mappingbased scheme for AFDM systems. Numerical results verify the effectiveness of the proposed time and frequency offset estimation criteria and the mirror-mapping-based modulation for AFDM systems.
Abstract:The prompt-based learning paradigm, which bridges the gap between pre-training and fine-tuning, achieves state-of-the-art performance on several NLP tasks, particularly in few-shot settings. Despite being widely applied, prompt-based learning is vulnerable to backdoor attacks. Textual backdoor attacks are designed to introduce targeted vulnerabilities into models by poisoning a subset of training samples through trigger injection and label modification. However, they suffer from flaws such as abnormal natural language expressions resulting from the trigger and incorrect labeling of poisoned samples. In this study, we propose ProAttack, a novel and efficient method for performing clean-label backdoor attacks based on the prompt, which uses the prompt itself as a trigger. Our method does not require external triggers and ensures correct labeling of poisoned samples, improving the stealthy nature of the backdoor attack. With extensive experiments on rich-resource and few-shot text classification tasks, we empirically validate ProAttack's competitive performance in textual backdoor attacks. Notably, in the rich-resource setting, ProAttack achieves state-of-the-art attack success rates in the clean-label backdoor attack benchmark without external triggers.