Abstract:Large Vision-Language Models (LVLMs) have demonstrated impressive multimodal reasoning capabilities, but they remain susceptible to hallucination, particularly object hallucination where non-existent objects or incorrect attributes are fabricated in generated descriptions. Existing detection methods achieve strong performance but rely heavily on expensive API calls and iterative LVLM-based validation, making them impractical for large-scale or offline use. To address these limitations, we propose CutPaste\&Find, a lightweight and training-free framework for detecting hallucinations in LVLM-generated outputs. Our approach leverages off-the-shelf visual and linguistic modules to perform multi-step verification efficiently without requiring LVLM inference. At the core of our framework is a Visual-aid Knowledge Base that encodes rich entity-attribute relationships and associated image representations. We introduce a scaling factor to refine similarity scores, mitigating the issue of suboptimal alignment values even for ground-truth image-text pairs. Comprehensive evaluations on benchmark datasets, including POPE and R-Bench, demonstrate that CutPaste\&Find achieves competitive hallucination detection performance while being significantly more efficient and cost-effective than previous methods.
Abstract:This study introduces two novel benchmarks, SeaExam and SeaBench, designed to evaluate the capabilities of Large Language Models (LLMs) in Southeast Asian (SEA) application scenarios. Unlike existing multilingual datasets primarily derived from English translations, these benchmarks are constructed based on real-world scenarios from SEA regions. SeaExam draws from regional educational exams to form a comprehensive dataset that encompasses subjects such as local history and literature. In contrast, SeaBench is crafted around multi-turn, open-ended tasks that reflect daily interactions within SEA communities. Our evaluations demonstrate that SeaExam and SeaBench more effectively discern LLM performance on SEA language tasks compared to their translated benchmarks. This highlights the importance of using real-world queries to assess the multilingual capabilities of LLMs.
Abstract:Previous research on multimodal entity linking (MEL) has primarily employed contrastive learning as the primary objective. However, using the rest of the batch as negative samples without careful consideration, these studies risk leveraging easy features and potentially overlook essential details that make entities unique. In this work, we propose JD-CCL (Jaccard Distance-based Conditional Contrastive Learning), a novel approach designed to enhance the ability to match multimodal entity linking models. JD-CCL leverages meta-information to select negative samples with similar attributes, making the linking task more challenging and robust. Additionally, to address the limitations caused by the variations within the visual modality among mentions and entities, we introduce a novel method, CVaCPT (Contextual Visual-aid Controllable Patch Transform). It enhances visual representations by incorporating multi-view synthetic images and contextual textual representations to scale and shift patch representations. Experimental results on benchmark MEL datasets demonstrate the strong effectiveness of our approach.
Abstract:Data contamination hinders fair LLM evaluation by introducing test data into newer models' training sets. Existing studies solve this challenge by updating benchmarks with newly collected data. However, they fail to guarantee contamination-free evaluation as the newly collected data may contain pre-existing knowledge, and their benchmark updates rely on intensive human labor. To address these issues, we in this paper propose AntiLeak-Bench, an automated anti-leakage benchmarking framework. Instead of simply using newly collected data, we construct samples with explicitly new knowledge absent from LLMs' training sets, which thus ensures strictly contamination-free evaluation. We further design a fully automated workflow to build and update our benchmark without human labor. This significantly reduces the cost of benchmark maintenance to accommodate emerging LLMs. Through extensive experiments, we highlight that data contamination likely exists before LLMs' cutoff time and demonstrate AntiLeak-Bench effectively overcomes this challenge.
Abstract:To equip artificial intelligence with a comprehensive understanding towards a temporal world, video and 4D panoptic scene graph generation abstracts visual data into nodes to represent entities and edges to capture temporal relations. Existing methods encode entity masks tracked across temporal dimensions (mask tubes), then predict their relations with temporal pooling operation, which does not fully utilize the motion indicative of the entities' relation. To overcome this limitation, we introduce a contrastive representation learning framework that focuses on motion pattern for temporal scene graph generation. Firstly, our framework encourages the model to learn close representations for mask tubes of similar subject-relation-object triplets. Secondly, we seek to push apart mask tubes from their temporally shuffled versions. Moreover, we also learn distant representations for mask tubes belonging to the same video but different triplets. Extensive experiments show that our motion-aware contrastive framework significantly improves state-of-the-art methods on both video and 4D datasets.
Abstract:Temporal grounding, which localizes video moments related to a natural language query, is a core problem of vision-language learning and video understanding. To encode video moments of varying lengths, recent methods employ a multi-level structure known as a feature pyramid. In this structure, lower levels concentrate on short-range video moments, while higher levels address long-range moments. Because higher levels experience downsampling to accommodate increasing moment length, their capacity to capture information is reduced and consequently leads to degraded information in moment representations. To resolve this problem, we propose a contrastive learning framework to capture salient semantics among video moments. Our key methodology is to leverage samples from the feature space emanating from multiple stages of the video encoder itself requiring neither data augmentation nor online memory banks to obtain positive and negative samples. To enable such an extension, we introduce a sampling process to draw multiple video moments corresponding to a common query. Subsequently, by utilizing these moments' representations across video encoder layers, we instantiate a novel form of multi-scale and cross-scale contrastive learning that links local short-range video moments with global long-range video moments. Extensive experiments demonstrate the effectiveness of our framework for not only long-form but also short-form video grounding.
Abstract:Large Language Models (LLMs) have shown strong in-context learning (ICL) abilities with a few demonstrations. However, one critical challenge is how to select demonstrations to elicit the full potential of LLMs. In this paper, we propose Curriculum Demonstration Selection (CDS), a novel demonstration selection method for ICL. Instead of merely using similarity, CDS additionally partitions samples by their complexity measurements. Following curriculum learning, CDS then selects demonstrations from easy to difficult. Thus the selected demonstrations cover a wide range of difficulty levels, enabling LLMs to learn from varied complexities within the training set. Experiments demonstrate that our CDS consistently outperforms baseline methods, achieving notable improvements across nine LLMs on three benchmarks. Moreover, CDS proves especially effective in enhancing LLM performance in solving challenging problems.
Abstract:We present Multi-expert Prompting, a novel enhancement of ExpertPrompting (Xu et al., 2023), designed to improve the large language model (LLM) generation. Specifically, it guides an LLM to fulfill an input instruction by simulating multiple experts, aggregating their responses, and selecting the best among individual and aggregated responses. This process is performed in a single chain of thoughts through our seven carefully designed subtasks derived from the Nominal Group Technique (Ven and Delbecq, 1974), a well-established decision-making framework. Our evaluations demonstrate that Multi-expert Prompting significantly outperforms ExpertPrompting and comparable baselines in enhancing the truthfulness, factuality, informativeness, and usefulness of responses while reducing toxicity and hurtfulness. It further achieves state-of-the-art truthfulness by outperforming the best baseline by 8.69% with ChatGPT. Multi-expert Prompting is efficient, explainable, and highly adaptable to diverse scenarios, eliminating the need for manual prompt construction.
Abstract:Retrieval-augmented generation (RAG) methods are viable solutions for addressing the static memory limits of pre-trained language models. Nevertheless, encountering conflicting sources of information within the retrieval context is an inevitable practical challenge. In such situations, the language models are recommended to transparently inform users about the conflicts rather than autonomously deciding what to present based on their inherent biases. To analyze how current large language models (LLMs) align with our recommendation, we introduce WhoQA, a public benchmark dataset to examine model's behavior in knowledge conflict situations. We induce conflicts by asking about a common property among entities having the same name, resulting in questions with up to 8 distinctive answers. WhoQA evaluation set includes 5K questions across 13 Wikidata property types and 150K Wikipedia entities. Our experiments show that despite the simplicity of WhoQA questions, knowledge conflicts significantly degrades LLMs' performance in RAG settings.
Abstract:Fallacies are defective arguments with faulty reasoning. Detecting and classifying them is a crucial NLP task to prevent misinformation, manipulative claims, and biased decisions. However, existing fallacy classifiers are limited by the requirement for sufficient labeled data for training, which hinders their out-of-distribution (OOD) generalization abilities. In this paper, we focus on leveraging Large Language Models (LLMs) for zero-shot fallacy classification. To elicit fallacy-related knowledge and reasoning abilities of LLMs, we propose diverse single-round and multi-round prompting schemes, applying different task-specific instructions such as extraction, summarization, and Chain-of-Thought reasoning. With comprehensive experiments on benchmark datasets, we suggest that LLMs could be potential zero-shot fallacy classifiers. In general, LLMs under single-round prompting schemes have achieved acceptable zero-shot performances compared to the best full-shot baselines and can outperform them in all OOD inference scenarios and some open-domain tasks. Our novel multi-round prompting schemes can effectively bring about more improvements, especially for small LLMs. Our analysis further underlines the future research on zero-shot fallacy classification. Codes and data are available at: https://github.com/panFJCharlotte98/Fallacy_Detection.