Abstract:Learned Sparse Retrieval (LSR) models use vocabularies from pre-trained transformers, which often split entities into nonsensical fragments. Splitting entities can reduce retrieval accuracy and limits the model's ability to incorporate up-to-date world knowledge not included in the training data. In this work, we enhance the LSR vocabulary with Wikipedia concepts and entities, enabling the model to resolve ambiguities more effectively and stay current with evolving knowledge. Central to our approach is a Dynamic Vocabulary (DyVo) head, which leverages existing entity embeddings and an entity retrieval component that identifies entities relevant to a query or document. We use the DyVo head to generate entity weights, which are then merged with word piece weights to create joint representations for efficient indexing and retrieval using an inverted index. In experiments across three entity-rich document ranking datasets, the resulting DyVo model substantially outperforms state-of-the-art baselines.
Abstract:Counterfactual statements, which describe events that did not or cannot take place, are beneficial to numerous NLP applications. Hence, we consider the problem of counterfactual detection (CFD) and seek to enhance the CFD models. Previous models are reliant on clue phrases to predict counterfactuality, so they suffer from significant performance drop when clue phrase hints do not exist during testing. Moreover, these models tend to predict non-counterfactuals over counterfactuals. To address these issues, we propose to integrate neural topic model into the CFD model to capture the global semantics of the input statement. We continue to causally intervene the hidden representations of the CFD model to balance the effect of the class labels. Extensive experiments show that our approach outperforms previous state-of-the-art CFD and bias-resolving methods in both the CFD and other bias-sensitive tasks.
Abstract:Data quality stands at the forefront of deciding the effectiveness of video-language representation learning. However, video-text pairs in previous data typically do not align perfectly with each other, which might lead to video-language representations that do not accurately reflect cross-modal semantics. Moreover, previous data also possess an uneven distribution of concepts, thereby hampering the downstream performance across unpopular subjects. To address these problems, we propose a contrastive objective with a subtractive angular margin to regularize cross-modal representations in their effort to reach perfect similarity. Furthermore, to adapt to the non-uniform concept distribution, we propose a multi-layer perceptron (MLP)-parameterized weighting function that maps loss values to sample weights which enable dynamic adjustment of the model's focus throughout the training. With the training guided by a small amount of unbiased meta-data and augmented by video-text data generated by large vision-language model, we improve video-language representations and achieve superior performances on commonly used video question answering and text-video retrieval datasets.
Abstract:Humans use multiple senses to comprehend the environment. Vision and language are two of the most vital senses since they allow us to easily communicate our thoughts and perceive the world around us. There has been a lot of interest in creating video-language understanding systems with human-like senses since a video-language pair can mimic both our linguistic medium and visual environment with temporal dynamics. In this survey, we review the key tasks of these systems and highlight the associated challenges. Based on the challenges, we summarize their methods from model architecture, model training, and data perspectives. We also conduct performance comparison among the methods, and discuss promising directions for future research.
Abstract:Topic models have been evolving rapidly over the years, from conventional to recent neural models. However, existing topic models generally struggle with either effectiveness, efficiency, or stability, highly impeding their practical applications. In this paper, we propose FASTopic, a fast, adaptive, stable, and transferable topic model. FASTopic follows a new paradigm: Dual Semantic-relation Reconstruction (DSR). Instead of previous conventional, neural VAE-based or clustering-based methods, DSR discovers latent topics by reconstruction through modeling the semantic relations among document, topic, and word embeddings. This brings about a neat and efficient topic modeling framework. We further propose a novel Embedding Transport Plan (ETP) method. Rather than early straightforward approaches, ETP explicitly regularizes the semantic relations as optimal transport plans. This addresses the relation bias issue and thus leads to effective topic modeling. Extensive experiments on benchmark datasets demonstrate that our FASTopic shows superior effectiveness, efficiency, adaptivity, stability, and transferability, compared to state-of-the-art baselines across various scenarios. Our code is available at https://github.com/bobxwu/FASTopic .
Abstract:Dynamic topic models track the evolution of topics in sequential documents, which have derived various applications like trend analysis and opinion mining. However, existing models suffer from repetitive topic and unassociated topic issues, failing to reveal the evolution and hindering further applications. To address these issues, we break the tradition of simply chaining topics in existing work and propose a novel neural \modelfullname. We introduce a new evolution-tracking contrastive learning method that builds the similarity relations among dynamic topics. This not only tracks topic evolution but also maintains topic diversity, mitigating the repetitive topic issue. To avoid unassociated topics, we further present an unassociated word exclusion method that consistently excludes unassociated words from discovered topics. Extensive experiments demonstrate our model significantly outperforms state-of-the-art baselines, tracking topic evolution with high-quality topics, showing better performance on downstream tasks, and remaining robust to the hyperparameter for evolution intensities. Our code is available at https://github.com/bobxwu/CFDTM .
Abstract:Previous work on multimodal sentence embedding has proposed multimodal contrastive learning and achieved promising results. However, by taking the rest of the batch as negative samples without reviewing when forming contrastive pairs, those studies encountered many suspicious and noisy negative examples, significantly affecting the methods' overall performance. In this work, we propose KDMCSE (Knowledge Distillation Multimodal contrastive learning of Sentence Embeddings), a novel approach that enhances the discrimination and generalizability of multimodal representation and inherits the knowledge from the teacher model to learn the difference between positive and negative instances and via that, can detect noisy and wrong negative samples effectively before they are calculated in the contrastive objective. Furthermore, to overcome the limitation of modeling the variation within negative pairs, we introduce a new contrastive objective, AdapACSE (Adaptive Angular Margin Supervised Contrastive Learning for Multimodal sentence embeddings), that enhances the discriminative representation by strengthening the margin within the angular space while capturing varying semantics within the negative. Experimental results on widely used Semantic Textual Similarity (STS) benchmarks demonstrate the effectiveness of our approach.
Abstract:Learned sparse retrieval (LSR) is a family of neural methods that encode queries and documents into sparse lexical vectors that can be indexed and retrieved efficiently with an inverted index. We explore the application of LSR to the multi-modal domain, with a focus on text-image retrieval. While LSR has seen success in text retrieval, its application in multimodal retrieval remains underexplored. Current approaches like LexLIP and STAIR require complex multi-step training on massive datasets. Our proposed approach efficiently transforms dense vectors from a frozen dense model into sparse lexical vectors. We address issues of high dimension co-activation and semantic deviation through a new training algorithm, using Bernoulli random variables to control query expansion. Experiments with two dense models (BLIP, ALBEF) and two datasets (MSCOCO, Flickr30k) show that our proposed algorithm effectively reduces co-activation and semantic deviation. Our best-performing sparsified model outperforms state-of-the-art text-image LSR models with a shorter training time and lower GPU memory requirements. Our approach offers an effective solution for training LSR retrieval models in multimodal settings. Our code and model checkpoints are available at github.com/thongnt99/lsr-multimodal
Abstract:Learned Sparse Retrieval (LSR) is a group of neural methods designed to encode queries and documents into sparse lexical vectors. These vectors can be efficiently indexed and retrieved using an inverted index. While LSR has shown promise in text retrieval, its potential in multi-modal retrieval remains largely unexplored. Motivated by this, in this work, we explore the application of LSR in the multi-modal domain, i.e., we focus on Multi-Modal Learned Sparse Retrieval (MLSR). We conduct experiments using several MLSR model configurations and evaluate the performance on the image suggestion task. We find that solving the task solely based on the image content is challenging. Enriching the image content with its caption improves the model performance significantly, implying the importance of image captions to provide fine-grained concepts and context information of images. Our approach presents a practical and effective solution for training LSR retrieval models in multi-modal settings.
Abstract:Recent representation learning approaches enhance neural topic models by optimizing the weighted linear combination of the evidence lower bound (ELBO) of the log-likelihood and the contrastive learning objective that contrasts pairs of input documents. However, document-level contrastive learning might capture low-level mutual information, such as word ratio, which disturbs topic modeling. Moreover, there is a potential conflict between the ELBO loss that memorizes input details for better reconstruction quality, and the contrastive loss which attempts to learn topic representations that generalize among input documents. To address these issues, we first introduce a novel contrastive learning method oriented towards sets of topic vectors to capture useful semantics that are shared among a set of input documents. Secondly, we explicitly cast contrastive topic modeling as a gradient-based multi-objective optimization problem, with the goal of achieving a Pareto stationary solution that balances the trade-off between the ELBO and the contrastive objective. Extensive experiments demonstrate that our framework consistently produces higher-performing neural topic models in terms of topic coherence, topic diversity, and downstream performance.